Complete question is;
Does the galvanometer deflect to the left or the right when
a) the magnet is being pushed in
b) the magnet is being pulled out
c) the magnet is being held steady?
Answer:
Option A - when the magnet is being pulled out
Explanation:
Faraday’s law of electromagnetic induction states that: “Voltage is induced in a circuit whenever relative motion exists between the conductor and the magnetic field, and the magnitude of the voltage will be proportional to the rate of change of the flux”.
Now, applying it to the question, When the magnet is moved towards the sensitive center of the galvanometer and then pulled out, the needle of the galvanometer will deflect away from its center position in one direction only but when it is held steady, the needle of the galvanometer will return back to zero.
Answer:
C) steel turning to rust in salt air
Explanation:
The missing options are:
A) ice melting to form liquid water
B) water boiling to form steam
C) steel turning to rust in salt air
D) sugar dissolving into hot coffee
In a chemical change the atoms of the reacting compounds are reordered forming new compounds. In a chemical change, new compounds appear, but in a physical change not.
Then, change of states like ice melting and water boiling are not chemical changes.
During steel rust, components of steel, like iron, are oxidized, that is, reacts with oxygen forming oxides.
The dissolution of sugar into hot coffee is a physical change in which sugar molecules get further apart in the coffee, but they don't change.
Answer:
How did life begin on earth?
Explanation:
this is an example of a question that cannot be solved or why do we sleep too cannot be solved
Answer:
ΔV=0.484mV
Explanation:
The potential difference across the end of conductor that obeys Ohms law:
ΔV=IR
Where I is current
R is resistance
The resistance of a cylindrical conductor is related to its resistivity p,Length L and cross section area A
R=(pL)/A
Given data
Length L=3.87 cm =0.0387m
Diameter d=2.11 cm =0.0211 m
Current I=165 A
Resistivity of aluminum p=2.65×10⁻⁸ ohms
So
ΔV=IR

ΔV=0.484mV