Answer:
m = 15.15 kg
Explanation:
Newton's Second Law of motion states that when an unbalanced force is applied on a body, an acceleration is produced in it in the direction of force. The component of force along the horizontal direction here, will be given by the Newton's Second Law as:
Fx = ma
F Cosθ = ma
where,
F = Magnitude of Force = 85 N
θ = Angle with horizontal = 27°
m = mass of object = ?
a = acceleration of object = 5 m/s²
Therefore,
85 N Cos 27° = m(5 m/s²)
m = 75.73 N/5 m/s²
<u>m = 15.15 kg</u>
Answer:
1. 
2.
3. 
4. 
Explanation:
1. The frequency of rotation is given by:

Where:
ω: is the angular speed = 50 rotations (revolutions) in 25 s.
We need to convert the units of ω.

Now, the frequency is:

2. The frequency is:
We know:
5 laps = 5 revolutions
t: time = 450 s
3. The frequency of the pendulum is:

4. We have:
θ: number of revolutions = 48 rev
f = 12 Hz
t =?
The time can be calculated as follows:


I hope it helps you!
Answer:
The time it takes the ball to fall 3.8 meters to friend below is approximately 0.88 seconds
Explanation:
The height from which the student tosses the ball to a friend, h = 3.8 meters above the friend
The direction in which the student tosses the ball = The horizontal direction
Given that the ball is tossed in the horizontal direction, and not the vertical direction, the initial vertical component of the velocity of the ball = 0
The equation of the vertical motion of the ball can therefore, be represented by the free fall equation as follows;
h = 1/2 × g × t²
Where;
g = The acceleration due gravity of the ball = 9.81 m/s²
t = The time of motion to cover height, h
Then height is already given as h = 3.8 m
Substituting gives;
3.8 = 1/2 × 9.81 × t²
t² = 3.8/(1/2 × 9.81) ≈ 0.775 s²
∴ t = √0.775 ≈ 0.88 seconds
The time it takes the ball to fall 3.8 meters to friend below is t ≈ 0.88 seconds.
Answer:
We can't actually see the force of gravity BUT we can see its effect.