Answer:
W = 7.06 J
Explanation:
From the given information the spring constant 'k' can be calculated using the Hooke's Law.

Now, using this spring constant the additional work required by F to stretch the spring can be found.
The work energy theorem tells us that the work done on the spring is equal to the change in the energy. Therefore,
![W = U_2 - U_1\\W = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2 = \frac{1}{2}(275.13)[0.29^2 - 0.18^2] = 7.06~J](https://tex.z-dn.net/?f=W%20%3D%20U_2%20-%20U_1%5C%5CW%20%3D%20%5Cfrac%7B1%7D%7B2%7Dkx_2%5E2%20-%20%5Cfrac%7B1%7D%7B2%7Dkx_1%5E2%20%3D%20%5Cfrac%7B1%7D%7B2%7D%28275.13%29%5B0.29%5E2%20-%200.18%5E2%5D%20%3D%207.06~J)
Answer:
Lithium
Explanation:
The equation for the photoelectric effect is

where
is the energy of the incident photon, with
h being the Planck constant
c is the speed of light
is the wavelength of the photon
is the work function of the metal (the minimum energy needed to extract the photoelectron from the metal)
is the maximum kinetic energy of the emitted photoelectrons
In this problem, we have
is the wavelength of the incident photon
is the maximum kinetic energy of the electrons
First of all we can find the energy of the incident photon

Converting into electronvolts,

So now we can re-arrange the equation of the photoelectric effect to find the work function of the metal

So the metal is most likely Lithium, which has a work function of 2.5 eV.
The ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity, I₀ is It/I₀ = 0.2925
To answer the question, we need to know what polarization of light is.
<h3>What is polarization of light?</h3>
This is when the electric field vector of light is oscillating in one plane.
- Now for light of intensity I' which is initially unpolarized, its intensity after polarization is I = 1/2I'.
- Also, for light initially polarized, its intensity after polarization is I"' = I"cos²Ф where Ф is the angle between the initial direction and the direction of polarization.
<h3>Intensity of light through each polarized filter</h3>
Given that we have 7 polarizing filters, each rotated 17° cw with respect to the previous filter.
So, since the light is initially unpolarized,
- The intensity through the first polarizing filter is I₁ = 1/2I₀ where I₀ is the initial intensity.
- The intensity through the second polarizing filter is I₂ = I₁cos²17°= 1/2I₀cos²17°
- The intensity through the third polarizing filter is I₃ = I₂cos²17° = 1/2I₀cos⁴17°
- The intensity through the fourth polarizing filter is I₄ = I₃cos²17° = 1/2I₀cos⁶17°
- The intensity through the fifth polarizing filter is I₅ = I₄cos²17° = 1/2I₀cos⁸17°
- The intensity through the sixth polarizing filter is I₆ = I₅cos²17° = 1/2I₀cos¹⁰17°
- The intensity through the seventh polarizing filter is I₇ = I₆cos²17° = 1/2I₀cos¹²17°.
<h3>The ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity</h3>
Since I₇ is the last intensity I₇ = It = 1/2I₀cos¹²17°.
So, It/I₀ = 1/2cos¹²17°
= 1/2(0.9563)¹²
= 1/2 × 0.5850
= 0.2925
So, the ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity, I₀ is It/I₀ = 0.2925
Learn more about intensity of polarized light here:
brainly.com/question/25402491
Answer:
A
Explanation:
I only think its A because of the gravity part...sorry im not good at explaining
Answer:
The ball fell 275.625 meters after 7.5 seconds
Explanation:
<u>Free fall
</u>
If an object is left on free air (no friction), it describes an accelerated motion in the vertical direction, powered exclusively by the acceleration of gravity. The formulas needed to compute the different magnitudes involved are


Where
is the final speed of the object in free fall, assumed positive downwards, t is the time elapsed since the release and y is the vertical distance traveled by the object
The ball was dropped from a cliff. We need to calculate the vertical distance the ball went down in t=7.5 seconds. We'll use the formula

