H ( hydrogen ) is the answer I believe.
Relative formula mass C₅H₁₁ = 71
Now divide the molar mass by the RFM = 142.32 / 71 = 2
Now C₍₅ₓ₂₎H₍₁₁ₓ₂) = C₁₀H₂₂
Hope that helps
Answer:
Heat flows from the block at high temperature to the one with lower temperature
Explanation:
The direction of heat flow is from a body at higher temperature to one with a lower temperature.
- Temperature gradient determines the way and manner in which heat is dissipated.
- As a system tend to increase entropy, it ensures that heat moves from hotter body to a colder body.
- Heat movement here is by conduction as the body touches.
- When both bodies reaches the same temperature, thermal equilibrium is established.
In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is equal to the heat of the reaction<span>. This is, the net energy released or absorbed (change) during a chemical reaction is the sum of the potential energy of the products less the sum of the potential energy of the reactants.</span>