1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
4 years ago
9

A certain Drosophila protein-encoding gene has one intron. If a large sample of null alleles of this gene is examined, will any

number of the mutant sites be expected(a) In the exons?(b) In the intron?(c) In the promoter?(d) In the intron-exon boundary?
Biology
1 answer:
Alex4 years ago
3 0

Answer:

a) Yes

b) Yes

c) Yes

d) Yes

Explanation:

a. In the exons?

Yes mutant site will be expected. It will transcript-ed as well and it can be a polypeptide depending on the mutation type.

b. In the intron?

Yes mutant site will be expected. It will be transcript-ed as well and it cannot be a  polypeptide  

c. In the promoter?

Yes mutant site will be expected. It will not be transcript-ed and it cannot be a  polypeptide

d. In the intron-exon boundary?

Yes mutant site will be expected. It will be transcript-ed and it cannot be a  polypeptide

You might be interested in
When oxygen is available,<br>cellular respiration takes place.​
nexus9112 [7]

Cellular respiration is a process that all living things use to convert glucose into energy. Autotrophs (like plants) produce glucose during photosynthesis. Heterotrophs (like humans) ingest other living things to obtain glucose. While the process can seem complex, this page takes you through the key elements of each part of cellular respiration.

Cellular respiration is a collection of three unique metabolic pathways: glycolysis, the citric acid cycle, and the electron transport chain. Glycolysis is an anaerobic process, while the other two pathways are aerobic. In order to move from glycolysis to the citric acid cycle, pyruvate molecules (the output of glycolysis) must be oxidized in a process called pyruvate oxidation.

Glycolysis

Glycolysis is the first pathway in cellular respiration. This pathway is anaerobic and takes place in the cytoplasm of the cell. This pathway breaks down 1 glucose molecule and produces 2 pyruvate molecules. There are two halves of glycolysis, with five steps in each half. The first half is known as the “energy requiring” steps. This half splits glucose, and uses up 2 ATP. If the concentration of pyruvate kinase is high enough, the second half of glycolysis can proceed. In the second half, the “energy releasing: steps, 4 molecules of ATP and 2 NADH are released. Glycolysis has a net gain of 2 ATP molecules and 2 NADH.

Some cells (e.g., mature mammalian red blood cells) cannot undergo aerobic respiration, so glycolysis is their only source of ATP. However, most cells undergo pyruvate oxidation and continue to the other pathways of cellular respiration.

Pyruvate Oxidation

In eukaryotes, pyruvate oxidation takes place in the mitochondria. Pyruvate oxidation can only happen if oxygen is available. In this process, the pyruvate created by glycolysis is oxidized. In this oxidation process, a carboxyl group is removed from pyruvate, creating acetyl groups, which compound with coenzyme A (CoA) to form acetyl CoA. This process also releases CO2.

Citric Acid Cycle

The citric acid cycle (also known as the Krebs cycle) is the second pathway in cellular respiration, and it also takes place in the mitochondria. The rate of the cycle is controlled by ATP concentration. When there is more ATP available, the rate slows down; when there is less ATP the rate increases. This pathway is a closed loop: the final step produces the compound needed for the first step.

The citric acid cycle is considered an aerobic pathway because the NADH and FADH2 it produces act as temporary electron storage compounds, transferring their electrons to the next pathway (electron transport chain), which uses atmospheric oxygen. Each turn of the citric acid cycle provides a net gain of CO2, 1 GTP or ATP, and 3 NADH and 1 FADH2.

Electron Transport Chain

Most ATP from glucose is generated in the electron transport chain. It is the only part of cellular respiration that directly consumes oxygen; however, in some prokaryotes, this is an anaerobic pathway. In eukaryotes, this pathway takes place in the inner mitochondrial membrane. In prokaryotes it occurs in the plasma membrane.

The electron transport chain is made up of 4 proteins along the membrane and a proton pump. A cofactor shuttles electrons between proteins I–III. If NAD is depleted, skip I: FADH2 starts on II. In chemiosmosis, a proton pump takes hydrogens from inside mitochondria to the outside; this spins the “motor” and the phosphate groups attach to that. The movement changes from ADP to ATP, creating 90% of ATP obtained from aerobic glucose catabolism.

7 0
3 years ago
Large molecules and wastes move through the membrane through
Inessa [10]
The plasma membrane allows large molecules and waste to move through its membrane.
3 0
3 years ago
Read 2 more answers
What is unique about lungfishes?
fgiga [73]
Jaisnosnka ainaubusbidbudbiabia hs usn

6 0
3 years ago
The _____ system includes the heart. endocrine respiratory nervous circulatory
Agata [3.3K]

Answer:

Circulatory would be the answer.

Explanation:

7 0
3 years ago
Which of the following is a relatively new disease?
mote1985 [20]
     Bird flu is a relatively new disease. Hope this helps!
6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the difference between an environment and an ecosystem
    9·1 answer
  • Chargaff discovered that: the tetranucleotide hypothesis was correct for any organism, the amount of A was equal to the amount o
    5·1 answer
  • Plant hormones can have different effects at different concentrations. this explains how ________.
    6·1 answer
  • Regions of a chromosome that are bundled in highly condensed chromatin are known as
    5·1 answer
  • What role does the heart play in helping the circulatory system perform its functions?
    12·2 answers
  • The interaction of Rhizobium bacteria with root nodules of legume plants is called
    13·1 answer
  • How do volcanoes provide evidence to scientists to support the idea that matter and energy move within the Earth’s interior?
    15·1 answer
  • What type of selection causes a shift in advantageous traits
    10·1 answer
  • The absorption process in the kidneys depends on the ___ between the medulla and the filtrate.
    8·2 answers
  • Will give brainliest
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!