Answer:
Organisms that do not live in water would either have to adapt, or they would die. Other water organisms might move into the ecosystem. Diseases that are waterborne might make a surge.
Explanation:
Oil is more dense than alcohol, but less dense than water. The molecules that make up the oil are larger than those that that make up water, so they cannot pack as tightly together as the water molecules can. They take up more space per unit area and are less dense.
Answer:
0.062mol
Explanation:
Using ideal gas law as follows;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821Latm/molK)
T = temperature (K)
Based on the information provided;
P = 152 Kpa = 152/101 = 1.50atm
V = 0.97L
n = ?
T = 12°C = 12 + 273 = 285K
Using PV = nRT
n = PV/RT
n = (1.5 × 0.97) ÷ (0.0821 × 285)
n = 1.455 ÷ 23.39
n = 0.062mol
Answer: sodium amide undergoes an acid -base reaction
Explanation:
sodium amide is a ionic compound and basically exists as sodium cation and amide anion. Amide anion is highly basic in nature and hence as soon as there is amide anion generated in the solution , Due to its very pronounced acidity it very quickly abstracts the slightly acidic proton available on methanol.
This leads to formation of ammonia and sodium methoxide.
Hence sodium amide reacts with methanol and abstracts its only acidic proton and form ammonia and sodium Methoxide.
Hence the 3rd statement is a corrects statement.
So we cannot use methanol for sodium amide because sodium amide itself would react with methanol and the inherent molecular natur of sodium amide would then change.
The 1st and 2nd statements both are incorrect because both the compounds methanol as well as sodium amide have dipole moments and hence are polar molecules.
The 4th statement is also incorrect as both the molecules have dipole moment and hence there would be ion-dipole forces operating between them.
The following reaction occurs:
NaNH₂+CH₃OH→NH₃+CH₃ONa