Answer:
\left \{ {{y=206} \atop {x=82}}Pb \right.
Explanation:
isotopes are various forms of same elements with different atomic number but different mass number.
Radioactivity is the emission of rays or particles from an atom to produce a new nuclei. There are various forms of radioactive emissions which are
- Alpha particle emission \left \{ {{y=4} \atop {x=2}}He \right.
- Beta particle emission \left \{ {{y=0} \atop {x=-1}}e \right.
- gamma radiation \left \{ {{y=0} \atop {x=0}}γ \right.
in the problem the product formed after radiation was Pb-206. isotopes of lead include Pb-204, Pb-206, Pb-207, Pb-208. they all have atomic number 82. which means the radiation cannot be ∝ or β since both radiations will alter the atomic number of the parent nucleus.
Only gamma radiation with \left \{ {{y=0} \atop {x=0}}γ \right. will produce a Pb-206 of atomic number 82 and mass number 206 , since gamma ray have 0 mass and has 0 atomic number.equation is shown below
\left \{ {{y=206} \atop {x=82}}Pb\right ⇒ \left \{ {{y=206} \atop {x=82}}Pb\right + \left \{ {{y=0} \atop {x=0}}γ\right.
Thus the atomic symbol is \left \{ {{y=206} \atop {x=82}}Pb\right
The solution changed color because the substances are not neutral.
<h3>
pH</h3>
Chemical substances have different concentrations of the hydrogen cation, called PH.
The higher the pH, the more basic the substance, and the lower the more acidic.
Bromothymol blue is a pH indicator that changes its color according to the pH of the substance, yellow for acid, blue for basic and green for neutral.
In the case of the reactions in question, we have the release of CO2 (acid) in combustion and in cellular respiration, changing the color of bromothymol blue to yellow.
Learn more about pH in: brainly.com/question/491373
Answer:
A is the correct option
Explanation:
batteries have chemical energy and will convert to electricity and when reached to bulb, it emits light as electromagnetic rays