Answer:
Plastic polymers
Explanation:
Plastic polymers are usually made up of synthetic and semi-synthetic polymers such as polyethylene, polystyrene etc.
Plastic polymers have a unique property called malleability. Malleability is the ability of a substance to be moulded into different sizes and shapes.
When hear is applied plastics gets soft and can be molded into different forms and then it becomes hardened after exposure to air(dried).
The plastic polymers are usually very cheap to produce in large quantities which is why it is very common in industries.
I can’t see the question :/
Answer:
Before performing chemical reactions, it is helpful to know how much product will be produced with given quantities of reactants. This is known as the theoretical yield. This is a strategy to use when calculating the theoretical yield of a chemical reaction. The same strategy can be applied to determine the amount of each reagent needed to produce a desired amount of product.
Explanation:
Reagent Examples
Reagents may be compounds or mixtures. In organic chemistry, most are small organic molecules or inorganic compounds. Examples of reagents include Grignard reagent, Tollens' reagent, Fehling's reagent, Collins reagent, and Fenton's reagent. However, a substance may be used as a reagent without having the word in its name.
<u>Answer:</u> The
for the reaction is 72 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)
( × 2)
(3)
( × 2)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[2\times (-\Delta H_2)]+[2\times (\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B2%5Ctimes%20%28-%5CDelta%20H_2%29%5D%2B%5B2%5Ctimes%20%28%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-1184))+(2\times -(-234))+(2\times (394))]=72kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-1184%29%29%2B%282%5Ctimes%20-%28-234%29%29%2B%282%5Ctimes%20%28394%29%29%5D%3D72kJ)
Hence, the
for the reaction is 72 kJ.