Answer:
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
Explanation:
Given data:
Atomic mass of silicon= ?
Percent abundance of Si-28 = 92.21%
Atomic mass of Si-28 = 27.98 amu
Percent abundance of Si-29 = 4.70%
Atomic mass of Si-29 = 28.98 amu
Percent abundance of Si-30 = 3.09%
Atomic mass of Si-30 = 29.97 amu
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass)+(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (92.21×27.98)+(4.70×28.98)+(3.09×29.97) /100
Average atomic mass = 2580.04 +136.21+92.61 / 100
Average atomic mass = 2808.86 / 100
Average atomic mass = 28.08amu.
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
<span>You must balance your equation correctly.
Here is your answer:
294gFeS2 x 1molFeS2/119.99 x 11mols O2/4mols FeS2--> 6.738mol O2
176gO2 x 1mol O2/32gO2 x 4mols FeS2/11mol FeS2--> 2mols FeS2
Now choose the molecule with the lowest amount (Limiting Reagent)
2molsFeS2 x 2molsFe2O3/4molsFeS2 x 159.7g
159.7g Fe2O3 grams produced.</span>
C is the correct answer (CaF2) (sorry dont have subscript)
Explanation: synthesis reaction forms a compound and calcium reacting with fluorine produces Calcium Fluoride (CaF2) chemical name
No He believed tiny particles were invisible and couldn't be changed....So No The person that believed in this was Dalton .
Answer:
carbon dioxide and oxygen