Answer:

Explanation:
By ideal gas equation law we know that
PV = nRT
now we know that when balloon rises to certain level then the number of moles will remains same
so we can say


now plug in all data to find the final volume of the balloon



The answer will be 8 because kedks
The answer they are looking for is the last one. However the last two are technically correct but the third one would result in negative work.
Kinetic energy has nothing to do with anything other than motion of the particle.
When a particle with velocity v collides another particle(suppose it is at rest for simplication), assuming that there is perfectly elastic collision between them, the velocity of particle which was at rest becomes mv/M ( assuming mass of particle in motion to be m and at rest to be M) from convervation of linear momentum. And all this transfer of energy happens in a fraction of seconds which is not visible to naked eyes.
Hence 1st option is correct!
Answer:
Psm = 30.66 [Psig]
Explanation:
To solve this problem we will use the ideal gas equation, recall that the ideal gas state equation is always worked with absolute values.
P * v = R * T
where:
P = pressure [Pa]
v = specific volume [m^3/kg]
R = gas constant for air = 0.287 [kJ/kg*K]
T = temperature [K]
<u>For the initial state</u>
<u />
P1 = 24 [Psi] + 14.7 = 165.47[kPa] + 101.325 = 266.8 [kPa] (absolute pressure)
T1 = -2.6 [°C] = - 2.6 + 273 = 270.4 [K] (absolute Temperature)
Therefore we can calculate the specific volume:
v1 = R*T1 / P1
v1 = (0.287 * 270.4) / 266.8
v1 = 0.29 [m^3/kg]
As there are no leaks, the mass and volume are conserved, so the volume in the initial state is equal to the volume in the final state.
V2 = 0.29 [m^3/kg], with this volume and the new temperature, we can calculate the new pressure.
T2 = 43 + 273 = 316 [K]
P2 = R*T2 / V2
P2 = (0.287 * 316) / 0.29
P2 = 312.73 [kPa]
Now calculating the manometric pressure
Psm = 312.73 -101.325 = 211.4 [kPa]
And converting this value to Psig
Psm = 30.66 [Psig]