Answer:
A.) 4.0
Explanation:
The general equilibrium expression looks like this:
![K = \frac{[C]^{c} [D]^{d} }{[A]^{a} [B]^{b} }](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%5BB%5D%5E%7Bb%7D%20%7D)
In this expression,
-----> K = equilibrium constant
-----> uppercase letters = molarity
-----> lowercase letters = balanced equation coefficients
In this case, the molarity's do not need to be raised to any numbers because the coefficients in the balanced equation are all 1. You can find the constant by plugging the given molarities into the equation and simplifying.
<----- Equilibrium expression
<----- Insert molarities
<----- Multiply
<----- Divide
Answer:
Glucose = C6H12O6
molecular mass = 6(12) + 12(1) + 6(16)
= 72 + 12 + 96
= 180 g
Explanation:
Glucose has a chemical formula of: C6H12O6 That means glucose is made of 6 carbon atoms, 12 hydrogen atoms and 6 oxygen atoms. ... Glucose is produced during photosynthesis and acts as the fuel for many organisms.
The answer would be c as the cart is not in motion therefor ruling out kinetic and it is completely at rest making all of it energy potential
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:
