It depends on the plant you have. when you buy a new plant it usually has instructions so you would follow. Hope it helps!!!
Answer:
energy goes into the chemical and cool downs the surrounding area.
The third shell has 3 subshells: the subshell, which has 1 orbital with 2 electrons, the subshell, which has 3 orbitals with 6 electrons, and the subshell, which has 5 orbitals with 10 electrons, for a total of 9 orbitals and 18 electrons.
Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>
Answer:
The initial volume in mL is 5959.2 mL
Explanation:
As the number of moles of a gas increases, the volume also increases. Hence, number of moles and volumes are directly proportional i.e
n ∝ V
Where n is the number of moles and V is the volume
Then, n = cV
c is the proportionality constant
∴n/V = c
Hence n₁/V₁ = n₂/V₂
Where n₁ is the initial number of moles
V₁ is the initial volume
n₂ is the final number of moles
and V₂ is the final volume.
From the question,
n₁ = 0.693 moles
V₁ = ?
n₂ = 0.928 moles
V₂ = 7.98 L
Putting the values into the equation
n₁/V₁ = n₂/V₂
0.693 / V₁ = 0.928 / 7.98
Cross multiply
∴ 0.928V₁ = 0.693 × 7.98
0.928V₁ = 5.53014
V₁ = 5.53014/0.928
V₁ = 5.9592 L
To convert to mL, multiply by 1000
∴ V₁ = 5.9592 × 1000 mL
V₁ = 5959.2 mL
Hence, the initial volume in mL is 5959.2 mL