Answer:
a)
b)
c) 0 J/K
d)S= 61.53 J/K
Explanation:
Given that
T₁ = 745 K
T₂ = 101 K
Q= 7190 J
a)
The entropy change of reservoir 745 K

Negative sign because heat is leaving.

b)
The entropy change of reservoir 101 K


c)
The entropy change of the rod will be zero.
d)
The entropy change of the system
S= S₁ + S₂
S = 71.18 - 9.65 J/K
S= 61.53 J/K
Answer:
What is C - when your front bumper is even with the front vehicles back bumper.
Explanation:
Good Luck
Answer:
1.06 secs
Explanation:
Initial speed of sled, u = 8.4 m/s
Final speed of sled, v = 5.8 m/s
Coefficient of kinetic friction, μ = 0.25
Using the impulse momentum theory, we know that the impulse applied to the sled is equal to change in momentum of the sled:
FΔt = mv - mu
where m = mass of the object
Δt = time interval
F = force applied
The force applied on the sled is the frictional force, which is given as:
F = -μmg
where g = acceleration due to gravity
Therefore:
-μmgΔt = mv - mu
-μmgΔt = m(v - u)
-μgΔt = v - u
Making Δt subject of formula:
Δt = (v - u) / -μg
Δt = (5.8 - 8.4) / (-0.25 * 9.8)
Δt = -2.6/ -2.45
Δt = 1.06 secs
It took the sled 1.06 secs to travel from A to B.
Because a sxientific law is always applies under the same conditions, and implies that there is a causal relationship involving its elements. And so that is why gravity <span>always applies under the same conditions, and implies that there is a causal relationship involving its elements.</span>
Answer:
The x-component of
is 56.148 newtons.
Explanation:
From 1st and 2nd Newton's Law we know that a system is at rest when net acceleration is zero. Then, the vectorial sum of the three forces must be equal to zero. That is:
(1)
Where:
,
,
- External forces exerted on the ring, measured in newtons.
- Vector zero, measured in newtons.
If we know that
,
,
and
, then we construct the following system of linear equations:
(2)
(3)
The solution of this system is:
, 
The x-component of
is 56.148 newtons.