True I hope this helps you out
Answer
Time period T = 1.50 s
time t = 40 s
r = 6.2 m
a)
Angular speed ω = 2π/T
=
= 4.189 rad/s
Angular acceleration α = 
= 
= 0.105 rad/s²
Tangential acceleration a = r α = 6.2 x 0.105 = 0.651 m/s²
b)The maximum speed.
v = 2πr/T
= 
= 25.97 m/s
So centripetal acceleration.
a = 
= 
= 108.781 m/s^2
= 11.1 g
in combination with the gravitation acceleration.


Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
A decrease in it's operating temperature would make a heat engine less efficient. This is because in order to operate, a heat engine needs to be hot and maintain that temperature.