Answer:
Explanation:
To solve this problem, we need to obtain the number of moles of the solute we desired to prepare;
Number of moles = molarity x volume
Parameters given;
volume of solution = 500mL = 0.5L
molarity of solution = 0.5M
Number of moles = 0.5 x 0.5 = 0.25moles
Now to know the volume stock to take;
Volume of stock =
molarity of stock = 4M
volume =
= 0.0625L or 62.5mL
The person who flips letters on a game show is called a Game Host.
Answer is: concentration of hydrogenium ions is 9,54·10⁻⁵ M.
c(HNO₂) = 0,075 M.
c(NaNO₂) = 0,035 M.
Ka(HNO₂) = 4,5·10⁻⁵.
This is buffer solution, so use <span>Henderson–Hasselbalch equation:
pH = pKa + log(c(</span>NaNO₂) ÷ c(HNO₂)).
pH = -log(4,5·10⁻⁵) + log(0,035 M ÷ 0,075 M).
pH = 4,35 - 0,33.
pH = 4,02.
<span>[H</span>₃O⁺] = 10∧(-4,02).
<span>[H</span>₃O⁺] = 0,0000954 M = 9,54·10⁻⁵ M.
1. sundering
2. talc
3 luster
Answer: 
Explanation:
a)
: This is a non polar covalent compound which are held by weak vanderwaal forces of attraction.
b)
: This is a covalent compound which is polar due to the presence of lone pair of electrons and are held by dipole-dipole forces of attraction.
c)
: These are joined by a special type of dipole dipole attraction called as hydrogen bond. It forms between electronegative nitrogen atom and hydrogen atom and is the strongest interaction.
d)
: This is a covalent compound and is non polar which are held by weak vanderwaal forces of attraction.
e)
: This is a covalent compound and is non polar which are held by weak vander waal forces of attraction.