Answer:
The average kinetic energy of the system has increased as a result of the temperature increasing.
Explanation:
Assuming this is a gas based on the framing.
The molecules of a gas span a distribution of speeds, and the average kinetic energy of the molecules is directly proportional to the absolute temperature of the sample. KEavg is proportional to T.
This can be further studied until the Kinetic-Molecular Theory.
Hello!
To find the mass of helium, we need to multiply the total moles by the mass of helium. We are given 2.714 moles of helium, and the mass of helium is about 4.00 grams. Now, we multiply the two values together to get the grams.
2.714 moles x 4.00 grams = 10.856 grams
According to the number of significant figures, 2.714 moles of helium has a mass of 10.9 grams (exact value: 10.856 grams).
Answer: Fluorine and chlorine are gases. Bromine is one of only two liquid elements, and iodine is a solid.
Answer: Heat of vaporization is 41094 Joules
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at 429 K = 760 torr
= final pressure at 415 K = 515 torr
= enthalpy of vaporisation = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 429 K
= final temperature = 515 K
Now put all the given values in this formula, we get
![\log (\frac{515}{760}=\frac{\Delta H}{2.303\times 8.314J/mole.K}[\frac{1}{429K}-\frac{1}{415K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B515%7D%7B760%7D%3D%5Cfrac%7B%5CDelta%20H%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B429K%7D-%5Cfrac%7B1%7D%7B415K%7D%5D)

Thus the heat of vaporization is 41094 Joules
Out of the options, glass is the least fluid. The proof of this also lies in the fact that glass is the most difficult to melt out of all of the mentioned substances, and melting point gives us a rough estimate of the strength of intermolecular forces.