Answer is: hydrogen bonds.
Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.
According to the principle of base pairing hydrogen bonds could form between adenine and thymine (two hydrogen bonds between this nucleobases) and guanine and cytosine (three hydrogen bonds between this nucleobases).
Adenine and guanine are purine derivatives and thymine and cytosine are pyrimidine derivates.
If each gas sample has the same temperature and pressure, which has the greatest volume? Since hydrogen gas has the lowest molar mass of the set, 1 g will have the greatest number of moles and therefore the greatest volume. What is the Ideal Gas Law?
Answer:
The ΔHrxn for the above equation = 179 kJ/mol
Explanation:
The reaction bond enthalpies are for the reactant;
3 × N-H = 3 × 390 = 1,170 kJ/mol
2 × O=O = 2 × 502 = 1004 kJ/mol
The reaction bond enthalpies are for the product;
3 × N-O = 3 × 201 = 603 kJ/mol
3 × O-H = 3 × 464 = 1,392 kJ/mol
The ΔHrxn for the above equation is therefore;
ΔHrxn = 1,170 + 1,004 - (603 + 1,392) = 179 kJ/mol
Answer:
394.99g
Explanation:
The number of moles of a substance can be calculated by dividing the number of atoms of such substance by Avagadro's number (6.02 × 10^23)
n = nA ÷ 6.02 × 10^23
The number of atoms of Fp3BZ2 in this question is 2.45E24 formula units i.e. 2.45 × 10^24
n = 2.45 × 10^24 ÷ 6.02 × 10^23
n = 2.45/6.02 × 10^(24-23)
n = 0.407 × 10¹
n = 4.07moles
Using mole = mass/molar mass
Where; molar mass of Fp3Bz2. is 97.05
g/mol.
mass = molar mass × mole
mass = 97.05 × 4.07
mass = 394.99g
Answer:
Boiling- 212° F melting- 32°F
Explanation: