Answer:
I'm thinking cooper but not sure
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Communication will be the answer
Answer:
hydrated ferric oxide is ferric hydoxide sol and is positively charged. When aqueous solution of NaCl is added to it,the Cl- ions neutralise the positive charge on the sol particles. In the absence of charge, brown precipitate is formes due to colloids can be coagulation of particles.Nov 11, 2020
Explanation: hope this help
Answer:
Depth and location affect ocean water’s temperature.
Explanation:
The main source of heat for the oceans is solar radiation. That is, water is basically heated by the radiation of the Sun, which transmits energy to the surface. The ocean absorbs this energy and stores it. Seawater has high caloric capacity. This means that more energy and more time is needed to change or increase the water temperature, compared to the air temperature. Similarly, once the ocean heats up, it takes a long time for the water to completely release or lose that heat.
The temperature decreases to greater depth, because the amount of solar radiation is reduced. On the contrary, it is greater where there is greater energy or heat content.
The closer a place is to the equator, the solar energy will affect more vertically and with more intensity on it, so the warmer the temperatures will be. The further that point of the equator is found, the solar energy will reach it with a smaller angle. And if the point is near the poles, the sun's rays will arrive at a very small angle. This causes the temperature of the water of the oceans to vary depending on the earth's latitude, being higher in areas close to the equator and the tropics, and colder the closer to the poles or the further away from the temperate zones.