Answer:
See the answer below
Explanation:
1. Organisms produce energy for cells by chemically breaking down and unlocking the energy locked-up within food materials in a process known as cellular respiration. The unlocked energy is then utilized for the cell's metabolic activities.
2. Cellular respiration can be aerobic or anaerobic.
Aerobic respiration involves the breakdown of carbohydrates in the presence of oxygen to yield energy in the form of ATP while carbon dioxide and water are produced as by-products.

Anaerobic respiration involves the breakdown of carbohydrates in the absence of oxygen to produce ATP and lactic acid as a by-product. The lactic acid is later oxidized to carbon dioxide and water to prevent it from building up.

3. Photosynthesis and cellular respiration are both considered metabolic processes that take place in living organisms. However, photosynthesis is peculiar only to green plants and some algae while respiration is common to all living organisms. While photosynthesis is anabolic, that is, it involves the building up of materials; respiration is said to be catabolic because it involves the breaking down of materials.
During photosynthesis, inorganic products are utilized to produce carbohydrates for plants with oxygen gas released as a by-product according to the following equation:

During respiration, the food taken by living organisms is broken down to unlock the energy in it for metabolic activities according to the following equation:

Answer:
The rapid movement of excess charge from one place to another is an <em>electric discharge.</em>
Explanation:
A material in which electrons <em>CANNOT</em> move easily from place to place is an insulator. A material in which electrons <em>CAN </em>move easily from place to place is a conductor.
Answer:
B. How much energy it takes to heat a substance
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
The substances with higher value of specific heat capacity require more heat to raise the temperature by one degree as compared the substances having low value of specific heat capacity. For example,
The specific heat capacity of oil is 1.57 j/g. K and for water is 4.18 j/g.K. So, water take a time to increase its temperature by one degree by absorbing more heat while oil will heat up faster by absorbing less amount of heat.
Consider that both oil and water have same mass of 5g and change in temperature is 15 K. Thus amount of heat thy absorbed to raise the temperature is,
For oil:
Q = m.c. ΔT
Q = 5 g× 1.67 j/g K × 15 K
Q = 125.25 j
For water:
Q = m.c. ΔT
Q = 5 g× 4.18 j/g K × 15 K
Q = 313.5 j
we can observe that water require more heat which is 313.5 j to increase its temperature.
This is false. The mir space station was launched by Russia.
Answer:
22572J
Explanation:
a) The following values have been given:
Mass of water = 180.0g
Initial temperature = 10°C
Final temperature = 40°C
molar heat capacity for water = 75.3J/Kmol
To calculate the specific heat capacity of water (c), we divide the molar heat capacity by molar mass of water (18g/mol)
That is; 75.3/18
= 4.183 Jg/K
b) The enthalpy change denoted by ∆H is the value we are trying to find.
c) To find enthalpy change (∆H), we use the formula:
∆H = m × c × ∆T
Where; m= mass
c= specific heat capacity
∆T= change in temperature =
(final temp - initial temp)
∆H = m × c × ∆T
∆H = 180 × 4.18 × (40-10)
∆H = 180 × 4.18 × 30
∆H = 22572J