Answer:
The question lacks options, the options are:
A) Energy is transferred to consumers, which convert it to nitrogen and use it to make amino acid
B) Energy from producers is converted into oxygen and transformed to consumers.
C) Energy from the sun is stored by green plants and transferred to consumers.
D) Energy is transferred to consumers, which use it to produce food.
The answer is C
Explanation:
Organisms obtain energy in an ecosystem by feeding on one another in a chain called FOOD CHAIN. Energy is transferred when one organism feeds on another. A food chain always begins with a PRODUCER, which is an autotrophic organism capable of producing its own food via light energy from the sun.
In a terrestrial ecosystem, the energy a plant captures via Its Chlorophyll is used to produce food during photosynthesis. This energy is stored in the plants and transferred when a set of organisms called PRIMARY CONSUMER feeds on the plant. The transfer continues in that order till decomposers.
Answer: C(OCH2CH3)CHCClCH(CH)2
Explanation:
The structural formula for m-chlorophenyl ethyl ether is
C(OCH2CH3)CHCClCH(CH)2.
The structural formula shows the step-by-step linkages.
Answer: A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions.
Explanation:
A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions.
Explanation:
The chart below shows monatomic ions formed when an atom loses or gains one or more electrons, and the ionic compounds they form. You can check your periodic table to see that the cations are monatomic ions formed from metals, and the anions are monatomic ions formed from nonmetals.
In order to calculate the mass of nitrogen, we must first calculate the mass percentage of nitrogen in potassium nitrate. This is:
% nitrogen = mass of nitrogen / mass of potassium nitrate
% nitrogen = 14 / 101.1 x 100
The mass of nitrogen = % nitrogen x sample mass
= (14 / 101.1) x 101.1
= 14 grams
The molar weight of nitrogen is 14. Each mole of urea contains two moles of nitrogen. Therefore, for there to be 14 grams of nitrogen, there must be 0.5 moles of urea.
Mass of urea = moles urea x molecular weight urea
Mass of urea = 0.5 x 66.06
Mass of urea = 33.03 grams
Answer:
Your answers are solids, liquids, and gases.
Explanation:
These are the three states of matter.
<em>Please</em><em> like</em><em> and</em><em> mark</em><em> brainliest</em><em>!</em>
<em>Hope</em><em> it</em><em> helps</em><em>!</em>