First of all, I is proportional V according to the Ohm's Law. R is merely a constant you need to obtain an equation. However, it is true that R changes with temperature and pressure, therefore Ohm's Law is only applicable in an invariable environment. Also this constant R is different for different materials.
So, do not get confused.
Ohm's law is not a universal law, please remember that as well. Some materials do not follow it and we call them non-ohmic conductors. I hope I helped! ^-^
If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small × ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The result is uniform circular motion.
Using the formula: ΔY = V₀y * t + (1/2) * ay * t²
Solve for time and get: 1.968s
Then use: v = d/t in the x-direction and get: d = 3.936
Answer:
The focal length of the mirror is 52.5 cm.
Explanation:
Given that,
Object to Image distance d = 140 cm
Image distance v= 35 cm
We need to calculate the object distance


We need to calculate the focal length
Using formula of mirror

Put the value into the formula



Hence, The focal length of the mirror is 52.5 cm.
Answer:
i3 =11.014A
i5 = 3.15A
Explanation:
Here according to k'chofs first law
i1 =i2 + i3
i3 = i4 + i5
For determine the i1 you have to consider the resultant resistor of the system
4 , 1 and 3 resistors are in pararel
Then, Resultant is
1/4 + 1/1 + 1/3 = 1/ R
R = 12/19
For get total we have to add another remaining 3 resistor because of serious
Then Resultant is = 12/19 + 3
= 69/19
Then using V = IR
40 =i3* 69/19
i3 = 11.014 A
Other 3 resistors are parrarel because of this voltage of those resistors are same.
Then i inversely propotional to its resistor
Then ,
i5 * 2 = (i3-i5)*4/5
i 5 = 3.15 A