Suppose earth is a soid sphere which will attract the body towards its centre.So, acc. to law of gravitation force on the body will be,
F=G*m1m2/R^2
but we now that F=ma
and here accleration(a)=accleration due to gravity(g),so
force applied by earth on will also be mg
replace above F in formula by mg and solve,
F=G*mE*m/R^2 ( here mE is mass of earth and m is mass of body)
mg=G*mEm/R^2
so,
g =G*mE/R^2
Answer:
Explanation:
Newton's first law of motion:
An object in motion stays in motion, and an object at rest stays at rest, until acted upon by an unbalanced force.
Newton's second law:
The net force on an object is equal to its mass times its acceleration.
Newton's third law:
For every action, there is an opposite and equal reaction.
Answer:
Atoms of tellurium (Te) have the greatest average number of neutrons equal to 76.
Explanation:
In the periodic table, Elements are represented with their respected symbols. Above the symbol is the elements atomic number which is equal to the number of protons in each atom. Below the symbol is the mass number of that element which is roughly equal to the sum of neutrons and protons of that atom.
To calculate the number of neutrons we can take the difference of Atomic number and mass number:
Number of neutrons = mass number - atomic number
<u>- Tin:</u>
Atomic number = 50
Mass number = 119
Number of neutrons = mass number - atomic number = 119 - 50
Number of neutrons = 69
<u>- Antimony(Sb):</u>
Atomic number = 51
Mass number = 122
Number of neutrons = mass number - atomic number = 122 - 51
Number of neutrons = 71
<u>- Tellurium(Te):</u>
Atomic number = 52
Mass number = 128
Number of neutrons = mass number - atomic number = 128 - 52
Number of neutrons = <u>76</u>
<u>- Iodine(I):</u>
Atomic number = 53
Mass number = 127
Number of neutrons = mass number - atomic number = 127 - 53
Number of neutrons = 74
Here, the greatest number of neutrons is for the atoms of Tellurium(Te).
Answer:
<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>
Explanation:
<h2>Answer: electrostatic and gravitational force
</h2><h2 />
Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.
In this sense, the following forces are conservative:
-Gravitational
-Elastic
-Electrostatics
While the Friction Force and the Magnetic Force are not conservative.
According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.