Answer:
I'm pretty sure it's 20m/s because 1300m divided by 65 seconds is 20 so I think it's 20m/s
Explanation:
Answer:
a) t=24s
b) number of oscillations= 11
Explanation:
In case of a damped simple harmonic oscillator the equation of motion is
m(d²x/dt²)+b(dx/dt)+kx=0
Therefore on solving the above differential equation we get,
x(t)=A₀
where A(t)=A₀
A₀ is the amplitude at t=0 and
is the angular frequency of damped SHM, which is given by,

Now coming to the problem,
Given: m=1.2 kg
k=9.8 N/m
b=210 g/s= 0.21 kg/s
A₀=13 cm
a) A(t)=A₀/8
⇒A₀
=A₀/8
⇒
applying logarithm on both sides
⇒
⇒
substituting the values

b) 

, where
is time period of damped SHM
⇒
let
be number of oscillations made
then, 
⇒
Answer: 6.9x 107 in standard form is 69,000,000
An object that has kinetic energy must be <em>moving</em>.
The formula for an object's kinetic energy is
KE = (1/2) · (the object's mass) · <u><em>(the object's speed)²</em></u>
As you can see from the formula, if the object has no speed, then its kinetic energy is zero. That's why kinetic energy is usually called the "energy of motion", and if an object HAS kinetic energy, then that tells you right away that it must be moving.