Answer:
This is because the acceleration of objects due to gravity is independent of the mass of the object and is constant for all objects, therefore, all objects fall with the same speed.
Explanation:
The weight of an object or force of gravity acting on an object on the surface of earth is a product of its mass and acceleration due to gravity.
Mathematically, w = mg
where, m=mass of the object; g = acceleration due to gravity
Also, from newton's law of gravitation, gravitational force on the object ,F = GMm/r²
where G is the gravitational constant; M is mass of Earth; m is mass of object; r is the distance of separation between the object and the center of mass of the earth which is approximately the radius of earth.
Since the weight of an object is equal to the force of gravitation acting on it
W = F
mg = GMm/r²
g = GM/r²
The expression above is that of the relationship between the force of gravity acting on a body on the earth's surface, the weight of that body and the acceleration due to gravity, g.
It can be seen that the acceleration due to gravity g is independent of the mass of the object. Therefore, the acceleration of objects due to gravity is constant for all objects and all objects fall with the same speed.
Answer:-2.86*10⁻⁴
Explanation: Use the equation change in volume = (change in pressure * original volume) / Bulks Modulus. ΔV = (-Δp*V₀) / B
Plugging in your numbers, you should get ΔV = (-2.29*10⁷*1) / (8*10¹⁰) = -2.86*10⁻⁴
ΔP = P₂-P₁ ----> ΔP = 2.30*10⁷ - 1.00*10⁵ = 2.29*10⁷
Answer: 4.
Explanation:
Use formula v = d / t, where v = speed, d = distance and t = time.
v = 10 / 2.5
v = 4.
Of the materials listed wood is the best insulator. It would be the least hot if exposed to similar temperatures.
Answer:
Fc = 89.67N
Explanation:
Since the rope is unstretchable, the total length will always be 34m.
From the attached diagram, you can see that we can calculate the new separation distance from the tree and the stucked car H as follows:
L1+L2=34m
Replacing this value in the previous equation:
Solving for H:

We can now, calculate the angle between L1 and the 2m segment:

If we make a sum of forces in the midpoint of the rope we get:
where T is the tension on the rope and F is the exerted force of 87N.
Solving for T, we get the tension on the rope which is equal to the force exerted on the car:
