<span>Answer: Force = 81.6 N
Explanation:
According to Newton's Second law:
F = ma --- (1)
Where F = Force = ?
m = Mass = 68 kg
a = Acceleration = 1.2 m/s^2
Plug in the values in (1):
(1) => F = 68 * 1.2
F = 81.6 N (The force needed to accelerate the skier at a rate of 1.2 m/s^2)</span>
Answer:
Total distance traveled = 9 m
Explanation:
Given:
Distance travel towards north = 3 meter
Distance travel towards south = 6 meter
Find:
Total distance traveled
Computation:
Total distance traveled = Sum of total distance
Total distance traveled = Distance travel towards north + Distance travel towards south
Total distance traveled = 3 m + 6 m
Total distance traveled = 9 m
Total thermal energy is the answer to your question.
Draw a diagram to illustrate the problem as shown below.
The vertical component of the launch velocity is
v = (8.5 m/s)*sin30° = 4.25 m/s
The horizontal component of the launch velocity is
8.5*cos30° = 7.361 m/s
Assume that aerodynamic resistance may be ignored.
Because the horizontal distance traveled is 19 m, the time of travel is
t = 19/7.361 = 2.581 s
The downward vertical travel is modeled by
h = (-4.25 m/s)*(2.581 s) + 0.5*(9.8 m/s²)*(2.581 s)²
= 21.675 m
Answer: The height is 21.7 m (nearest tenth)
The impulse imparted to the shells equals the change in the momentum:
Fav*(Delta t)= Delta m*v.
The mass change is
Delta m= n*m= (89.9shells)*(88.7g)=7.97Kg
So the average force is
F=((v)*(Delta m))/t= ((929)*(7.97))/4.84=1529.78 N
Since the velocity of the shells is much greater than the velocity of the helicopter, there is no need to use relative velocity.