1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
2 years ago
5

In the compound nickel(II) sulfide, there is always 58.7 g of nickel for every 32.1 g of sulfur. What is the simplified ratio of

Chemistry
1 answer:
Vesnalui [34]2 years ago
3 0

answer: 1.83 to 1

or at least that’s what i got

You might be interested in
Consider the following reaction where Kc = 1.80×10-2 at 698 K:
Klio2033 [76]

Answer:

The system is not in equilibrium and the reaction must run in the forward direction to reach equilibrium.

Explanation:

The reaction quotient Qc is a measure of the relative amount of products and reagents present in a reaction at any given time, which is calculated in a reaction that may not yet have reached equilibrium.

For the reversible reaction aA + bB⇔ cC + dD, where a, b, c and d are the stoichiometric coefficients of the balanced equation, Qc is calculated by:

Qc=\frac{[C]^{c}*[D]^{d}  } {[A]^{a}*[B]^{b}}

In this case:

Qc=\frac{[H_{2} ]*[I_{2} ] } {[HI]^{2}}

Since molarity is the concentration of a solution expressed in the number of moles dissolved per liter of solution, you have:

  • [H_{2} ]=\frac{2.09*10^{-2} moles}{1 Liter}=2.09*10⁻² \frac{moles}{liter}
  • [I_{2} ]=\frac{4.14*10^{-2} moles}{1 Liter}=4.14*10⁻² \frac{moles}{liter}
  • [I_{2} ]=\frac{0.280 moles}{1 Liter}= 0.280 \frac{moles}{liter}

So,

Qc=\frac{2.09*10^{-2} *4.14*10^{-2}  } {0.280^{2} }

Qc= 0.011

Comparing Qc with Kc allows to find out the status and evolution of the system:

If the reaction quotient is equal to the equilibrium constant, Qc = Kc, the system has reached chemical equilibrium.

If the reaction quotient is greater than the equilibrium constant, Qc> Kc, the system is not in equilibrium. In this case the direct reaction predominates and there will be more product present than what is obtained at equilibrium. Therefore, this product is used to promote the reverse reaction and reach equilibrium. The system will then evolve to the left to increase the reagent concentration.

If the reaction quotient is less than the equilibrium constant, Qc <Kc, the system is not in equilibrium. The concentration of the reagents is higher than it would be at equilibrium, so the direct reaction predominates. Thus, the system will evolve to the right to increase the concentration of products.

Being Qc=0.011 and Kc=1.80⁻²=0.018, then Qc<Kc. <u><em>The system is not in equilibrium and the reaction must run in the forward direction to reach equilibrium.</em></u>

8 0
3 years ago
How many moles of helium are 8.84×10^24 atoms of He?
viva [34]

Answer:

14.77 mol.

Explanation:

  • It is known that every 1.0 mole of compound or element contains Avogadro's number (6.022 x 10²³) of molecules or atoms.

<u><em>Using cross multiplication:</em></u>

1.0 mole of He contains → 6.022 x 10²³ atoms.

??? mole of He contains → 8.84 x 10²⁴ atoms.

<em>∴ The no. of moles of He contains (8.84 x 10²⁴ atoms) </em>= (1.0 mol)(8.84 x 10²⁴ atoms)/(6.022 x 10²³ atoms) =<em> 14.77 mol.</em>

8 0
3 years ago
Calculate the standard cell potential at 25 ∘C for the reaction X(s)+2Y+(aq)→X2+(aq)+2Y(s) where ΔH∘ = -687 kJ and ΔS∘ = -169 J/
aivan3 [116]

Answer:

-0.129V

Explanation:

The change in free energy is obtained from the given parameters after which the value is now applied to obtain the cell potential in volts from the formukar shown in the solution below.

6 0
3 years ago
What role does hydrogen bonding play in liquid water and ice?
Leto [7]
Due to hydrogen bonding there is a formation of cage like structure called lattice in ice due to which <span> density of ice is less than that of water. Moreover, it is a known fact that density of water is maximum at 4°C.</span>
5 0
3 years ago
How many mL will a 0.205 mole sample of He occupy at 3.00 atm and 200 K? Report your answer to the nearest mL.
Tcecarenko [31]

1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.

<h3>What is an ideal gas equation?</h3>

The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).

Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.

Given data:

P= 3.00 atm

V= ?

n=0.205 mole

R= 0.082057338 \;L \;atm \;K^{-1}mol^{-1}

T=200 K

Putting value in the given equation:

\frac{nRT}{P} =V

V= \frac{0.205 \;mole\;0.082057338 \;L \;atm \;K^{-1}mol^{-1} X 200}{3 \;atm}

V= 1.1214 mL

Learn more about the ideal gas here:

brainly.com/question/27691721

#SPJ1

4 0
1 year ago
Other questions:
  • Determine the concentrations of K2SO4, K+, and SO42− in a solution prepared by dissolving 2.07 × 10−4 g K2SO4 in 2.50 L of water
    5·1 answer
  • How are fireworks made ?
    12·1 answer
  • Biuret reagent will indicate the presence of
    9·1 answer
  • According to the periodic table, carbon has an atomic mass of 12.011 u. This indicates that the most abundant isotope of carbon
    14·2 answers
  • How many photons are produced in a laser pulse of 0.430j at 679nm.
    5·2 answers
  • 13 Consider this neutralization reaction.
    14·2 answers
  • Assign priorities in the following set of substituents according to Cahn-Ingold-Prelog rules.
    11·1 answer
  • Pls pls answer questions for chem final within 45 mins i will give brainliest
    9·1 answer
  • How many grams of silver nitrate are required to produce 3.00 g of silver phosphate?
    13·2 answers
  • Which of these structures is found in all types of plant and animal cells
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!