To answer this question, we should know the formula for the terminal velocity. The formula is written below:
v = √(2mg/ρAC)
where
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
Let's determine the mass, m, to be density*volume.
Volume = s³ = (1 cm*1 m/100 cm)³ = 10⁻⁶ m³
m = (1.6×10³ kg/m³)(10⁻⁶ m³) = 1.6×10⁻³ kg
A = (1 cm * 1 m/100 cm)² = 10⁻⁴ m²
v = √(2*1.6×10⁻³ kg*9.81 m/s²/1.6×10³ kg/m³*10⁻⁴ m²*0.8)
<em>v = 0.495 m/s</em>
Answer:
2.2 m/s^2
Explanation:
Acceleration = Force / Mass
= 7.92 / 3.6 = 2.2m/s^2
Hope this help you :3
By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.
Rearranging this equation to find acceleration would give us:
a = F/m
The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N
The mass is 2kg.
Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2
The acceleration of the box is 5ms^-2