<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
The mechanical energy in the falling water is used to spin the generator, and gets transformed into electrical energy. That's the first choice on the list.
I don't no if this helps but the body heat from your hand causes the liquid to boil, which in turn makes the liquid evaporate, turning it to gas. The expanding gas pushes the liquid upwards and when you release your hand, equilibrium is re-established.
I believe it is acceleration!