If the gymnast mass were doubled, her height (h) from the top of the board would be as follows,
с Stay the same
Explanation:
- The Mass of an object or body does not affect the acceleration due to gravity in any kind of way.
- Light weight objects accelerate more slowly than the heavy objects because when the forces other than the gravity also plays a major role.
- Mass increases of a body when an object has higher velocity or the speed.
- The greater the force of gravity, it would give a direct impact on the object's acceleration; thus considering only a force, the heavier the object is, it would accelerate faster. But an acceleration depends upon the two factors which are force and mass.
- Newton's second law of motion states that the acceleration of an object is dependent upon the two factors which are, the net force of an object and the mass of the object.
Oneiididudd even said wy the candy shop in the candy store and you I know you got it to get your gift card owywiwywuwywywywtwtwtwtwt teteyy gift cards and gift card gift gift card for your card gift cards to you
I think its B or D, most likely D.
Answer:
The force exerted by the biceps is 143.8 kgf.
Explanation:
To calculate the force exerted by the biceps, we calculate the momentum in the elbow.
This momentum has to be zero so that her forearm remains motionless.
Being:
W: mass weight (6.15 kg)
d_W= distance to the mass weight (0.425 m)
A: weight of the forearm (2.25 kg)
d_A: distance to the center of mass of the forearm (0.425/2=0.2125 m)
H: force exerted by the biceps
d_H: distance to the point of connection of the biceps (0.0215 m)
The momemtum is:

The force exerted by the biceps is 143.8 kgf.