Answer:
According to the travellers, Alpha Centauri is <em>c) very slightly less than 4 light-years</em>
<em></em>
Explanation:
For a stationary observer, Alpha Centauri is 4 light-years away but for an observer who is travelling close to the speed of light, Alpha Centauri is <em>very slightly less than 4 light-years. </em>The following expression explains why:
v = d / t
where
- v is the speed of the spaceship
- d is the distance
- t is the time
Therefore,
d = v × t
d = (0.999 c)(4 light-years)
d = 3.996 light-years
This distance is<em> very slightly less than 4 light-years. </em>
Answer:
(a) 4.27 x 10^-4 Telsa
(b) 3.28 x 10^-4 Telsa
Explanation:
side of square, a = 5.49 cm
inner radius, r = 18.1 cm = 0.181 m
number of turns,N = 450
current, i = 0.859 A
(a)
The magnetic field due to a solenoid due to inner radius is


B = 4.27 x 10^-4 Telsa
(b)
The outer radius is R = 18.1 + 5.49 = 23.59 cm = 0.236 m
The magnetic field due to the outer radius is


B = 3.28 x 10^-4 Tesla
Answer:
The other angle is 120°.
Explanation:
Given that,
Angle = 60
Speed = 5.0
We need to calculate the range
Using formula of range
...(I)
The range for the other angle is
....(II)
Here, distance and speed are same
On comparing both range






Hence, The other angle is 120°
Air resistance doesn't appear in the formula for gravitational force, because it doesn't affect it. Mass does because it does.