Answer:
151.9 N
Explanation:
Force = mass x acceleration
Acceleration due to gravity is 9.8 m/s^2 (you should memorize this number).
F = ma
F = (15.5)(9.8)
F = 151.9
(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;

solve (1) and (2)

since the yoyo is pulled in vertical direction, T = mg 
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
The possible magnitude for the force of static friction on the stationary cart is 72.1 N.
The given parameters:
- <em>Applied force on the cart, F = 72.1 N</em>
<em />
Based on Newton's second law of motion, the force applied to object is directly proportional to the product of mass and acceleration of the object.
F = ma
Static frictional force is the force resisting the motion of an object at rest.

where;
is the frictional force

Thus, the possible magnitude for the force of static friction on the stationary cart is 72.1 N.
Learn more about Newton's second law of motion: brainly.com/question/25307325
Answer:
Meter
Explanation:
The competition between the three quarterbacks is with respect to how far the ball would be thrown by each person, which is the distance covered by the ball. The thrown ball is an example of projectile, which would move over a certain distance.
With respect to the measure to be used in the competition, the appropriate SI unit is meter. This is the measure of length or distance covered.