Answer:
437 J
Explanation:
Parameters given:
Weight of child, W = 230 N
Height of swing, h = 1.9 m
Gravitational Potential Energy is given as:
P. E. = m*g*h = W*h
m = mass
h = height above the ground
W = weight
P. E. = 230 * 1.9
P. E. = 437 J
Answer:
Radiation
Explanation:
The fire from the burning house is not directly touching the house. Also not convection because there is not water involved
<span>For hydrolysis to monosaccharides, one molecule of a disaccharide needs only one molecule of water.
C12H22O11 (sucrose) + H2O = C6H12O6 (glucose) + C6H12O6 (fructose)
Structurally, a disaccharide molecule may be viewed as a product formed by the condensation of two molecules of monosaccharides with the elimination of a water molecule. So, only one H2O molecule is needed for the reverse process.</span>
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.
Answer:
23.52 m/s
Explanation:
The following data were obtained from the question:
Time taken (t) to reach the maximum height = 2.4 s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =..?
At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)
was thrown as follow:
v = u – gt (since the rock is going against gravity)
0 = u – (9.8 × 2.4)
0 = u – 23.52
Collect like terms
0 + 23.52 = u
u = 23.52 m/s
Therefore, the rock was thrown at a velocity of 23.52 m/s.