The formula we can use in this case is:
v = v0 + a t
where v is final velocity, v0 is initial velocity, a is
acceleration and t is time
So finding for v0:
v0 = v – a t
v0 = 43.7 – (2.5) 2.7
v0 = 36.95 m/s
Answer:
The skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Explanation:
To solve the problem it is necessary to go back to the theory of conservation of momentum, specifically in relation to the collision of bodies. In this case both have different addresses, consideration that will be understood later.
By definition it is known that the conservation of the moment is given by:

Our values are given by,

As the skater 1 run in x direction, there is not component in Y direction. Then,
Skate 1:


Skate 2:


Then, if we applying the formula in X direction:
m_1v_{x1}+m_2v_{x2}=(m_1+m_2)v_{fx}
75*5.45-75*1.41=(75+75)v_{fx}
Re-arrange and solving for v_{fx}
v_{fx}=\frac{4.04}{2}
v_{fx}=2.02m/s
Now applying the formula in Y direction:




Therefore the skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Answer:
Two stars, each of mass M, form a binary system. ... used is the distance between the centers of the planets; here that distance is 2R. ... r appears in the denominator of Newton's law of gravitation, the force of ... The orbital speed of a satellite orbiting the earth in a circular orbit at the ... is undergoing uniform circular motion?
Explanation:
Two stars, each of mass M, form a binary system. ... used is the distance between the centers of the planets; here that distance is 2R. ... r appears in the denominator of Newton's law of gravitation, the force of ... The orbital speed of a satellite orbiting the earth in a circular orbit at the ... is undergoing uniform circular motion?
Answer:
momentum formula = Mass × Velocity
Answer:
3kg sledgehammer swung at 1.5 m/s
Explanation:
Small Sledgehammer:
Mass:3.0
Velocity:1.5
MASS×VELOCITY=MOMENTUM
3.0×1.5= 4.5 (momentum)
Large Sledgehammer:
Mass:4.0
Velocity:0.9
4.0×0.9=3.6 (momentum)
higher momentum is the smaller Sledgehammer.