Answer:

Explanation:
The system ball-pin is modelled by the Principle of Moment Conservation:

The velocity of the bowling ball after the collision is:

Answer:
(a) 172.185 N
(b) 
Solution:
As per the question:
Mass of the child, m = 22.0 kg
Angle, 
Now,
(a) The magnitude of the normal force exerted by the slide on the child:


Now,
(b) The angle from the horizontal at which the force is directed is:

Since you already gave us the weight of the 2.5-kg box,
we don't even need to know what the distance is, just
as long as it doesn't change.
Look at the formula for the gravitational force:
F = G m₁ m₂ / R² .
If 'G', 'm₁' (mass of the Earth), and 'R' (distance from the Earth's center)
don't change, then the Force is proportional to m₂ ... mass of the box,
and you can write a simple proportion:
(6.1 N) / (2.5 kg) = (F) / (1 kg)
Cross-multiply: (6.1 N) (1 kg) = (F) (2.5 kg)
Divide each side by (2.5 kg): F = (6.1N) x (1 kg) / (2.5 kg) = 2.44 N .
I believe the answer is potential difference
Speed= distance/ time so distance = speed * time= 28 * 20= 560m .. so the answer is 560m.. l hope it helped :)