B. The resistance is directly proportional to length and inversely proportional to cross sectional area
Explanation:
(a) Hooke's law:
F = kx
7.50 N = k (0.0300 m)
k = 250 N/m
(b) Angular frequency:
ω = √(k/m)
ω = √((250 N/m) / (0.500 kg))
ω = 22.4 rad/s
Frequency:
f = ω / (2π)
f = 3.56 cycles/s
Period:
T = 1/f
T = 0.281 s
(c) EE = ½ kx²
EE = ½ (250 N/m) (0.0500 m)²
EE = 0.313 J
(d) A = 0.0500 m
(e) vmax = Aω
vmax = (0.0500 m) (22.4 rad/s)
vmax = 1.12 m/s
amax = Aω²
amax = (0.0500 m) (22.4 rad/s)²
amax = 25.0 m/s²
(f) x = A cos(ωt)
x = (0.0500 m) cos(22.4 rad/s × 0.500 s)
x = 0.00919 m
(g) v = dx/dt = -Aω sin(ωt)
v = -(0.0500 m) (22.4 rad/s) sin(22.4 rad/s × 0.500 s)
v = -1.10 m/s
a = dv/dt = -Aω² cos(ωt)
a = -(0.0500 m) (22.4 rad/s)² cos(22.4 rad/s × 0.500 s)
a = -4.59 m/s²
Answer:
(a) 1767.43 N
(b) 182.45 N
Explanation:
Radius of earth, R = 6450 km
Weight of person, W = 7070 N
mass of person, m = W / g = 7070 / 9.8 = 721.4 kg
(a) h = 6450 km
The value of acceleration due to gravity on height is given by


g' = g / 4 = 9.8 / 4 = 2.45 m/s^2
The weight of the person at such height is
W' = m x g' = 721.4 x 2.45
W' = 1767.43 N
(b) h = 33700 km
The value of acceleration due to gravity on height is given by


g' = g x 0.0258 = 9.8 x 0.0258 = 0.253 m/s^2
The weight of the person at such height is
W' = m x g'
W' = 721.4 x 0.253
W' = 182.45 N
2 someone's glasses could fall of because of the inertia
roller coaster is in motion but your glasses are opposing and resisting that motion due to inertia....
1 there is a possibility that electrons move from wheels to the rail and vice versa which also means that it is producing some kind of electrical energy
3 question can't answer