Answer:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.00064M)
Explanation:
Hello there!
In this case, according to the given chemical reaction at equilibrium, we can set up the equilibrium expression as follows:
![K=\frac{[CO][Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BCO%5D%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Which can be written in terms of x, according to the ICE table:

Thus, we solve for x to obtain that it has a value of 0.01436 M and therefore, the concentrations at equilibrium turn out to be:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.015M-0.01436M=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.015M-0.01436M%3D0.00064M)
Regards!
Answer:
4.66667 minutes
Explanation:
Rate constant, k = 9.90×10−3 s−1
Time = ?
Initial concentration, [A]o = 100
Final concentration, [A] = 6.25
The integral rate law for first order reactions is given as;
ln[A] = ln[A]o − kt
kt = ln[A]o - ln[A]
t = ( ln[A]o - ln[A]) / k
t = [ln(100) - ln(6.25)] / 9.90×10−3
t = 2.77 / 9.90×10−3
t = 0.28006 ×103
t = 280 seconds
t = 4.66667 minutes (Upon conversion by dividing by 60)
Answer:
Explanation:I would say an incline because if you are going up or down a ramp with a cart full of groceries it’s difficult to do lol hope this helps and I love your pfp have you played chapter 2 yet?
As the charge of chloride is 1- , two chloride ions are needed to cancel the 2+ charge in MgCl2
Answer:
Similarly, drugs, chemicals, temperature, and light are among the external environmental factors that can determine which genes are turned on and off, thereby influencing the way an organism develops and functions.
Explanation: