Arrow on the table below draw an
Explanation:
1) Based on the octet rule, iodine form an <u>I</u>⁻ ion.
Therefore,
Option E is correct ✔
2) The electronic configuration of the sulfide ion (S²⁻) is :
₁₆S = 1s² 2s² 2p⁶ 3s² 3p⁴ or [Ne] 3s² 3p⁴
₁₈S²⁻ = 1s² 2s² 2p⁶ 3s² 3p⁶ or [Ne] 3s² 3p⁶
Therefore,
Option E is correct ✔
3) valence shell electron of
Halogens = 7
Alkali metal = 1
Alkaline earth metal = 2
Therefore,
Option D is correct ✔
4) Group 2 element lose two electron in order to achieve Noble gas configuration.
And here Group 2 element is Sr
Therefore,
Option B is correct ✔
5) Group 13 element lose three electron in order to achieve Noble gas configuration.
And here Group 13 element is Al
Therefore,
Option B is correct ✔
6) For a given arrangements of ions, the lattice energy increases as ionic radius <u>decreases</u> and as ionic charge <u>increases</u>.
Therefore,
Option A is correct ✔
For metals, reactivity increases down a group and from right to left across a period. Non metals, reactivitt increases up a grouo and from left to right across a period. Francium is the most reactive metal and fluorine is the most reactive non-metal.
Answer:
Explanation:
Hi there,
To get started, let's first observe our rate law:
we typically use square brackets [x] for chemistry kinetics, because they specifically tell us we are dealing with <em>concentrations</em>.
This rate law is in fourth-order, because the concentrations powers add up to 4. We are not told the unit of time for this prompt (unless you know it), so I just assumed the time unit to be "time."
To calculate the reaction rate, we simply plug in the concentration of A and B into the rate law. k is the <em>rate constant</em> and stays the same for an individual reaction.
![R=(0.1 \ M^{-3}*time^{-1})[1 \ M]^2[2 \ M]^2=0.4 \ M/time](https://tex.z-dn.net/?f=R%3D%280.1%20%5C%20M%5E%7B-3%7D%2Atime%5E%7B-1%7D%29%5B1%20%5C%20M%5D%5E2%5B2%20%5C%20M%5D%5E2%3D0.4%20%5C%20M%2Ftime)
Thus, the rate of reaction with those concentrations is 0.4 M/time.
Notice, the rate constant does in fact have units of it own. The unit for k can be calculated by knowing that:
- Rate (R) must end up with units of concentration (M) per time.
- The concentrations raised to a power can be used to help solve for the units of k.
If you liked this solution, leave it as Brainliest Answer and give a Rating!