Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)
Answer:
They have the chance to inhale toxic fumes secreted by the mixture.
Explanation:
0.001 would be the smallest.
Good Luck! :)
1.51 x 10²⁵atoms
Explanation:
Given parameters:
Mass of Na = 578g
Unknown:
Number of atoms = ?
Solution:
To find the number of atoms, we must first find the number of moles the given mass contains.
Number of moles = 
molar mass of Na = 23g
Number of moles =
= 25.13moles
1 mole of a substance = 6.02 x 10²³atoms
25.13 mole of Na = 25.13 x 6.02 x 10²³atoms
This gives 1.51 x 10²⁵atoms of Na
Learn more:
Avogadro's constant brainly.com/question/2746374
#learnwithBrainly
1. Nickel (II) Bromide
2. Iron (II) Oxide
3. Iron (III) Oxide
4. Tin (IV) Chloride
5. Lead (IV) tetrachloride
6. Tin (II) Bromide
7. Chromium (III) Phosphide
8. Iron (II) Fluoride
9. Gold (III) Chloride
I hope this helps. I'm more than 100% sure that all the answers except for number 7 are correct. I knew all of them off the top of my head except for this one. I hope the other answer has the correct answer for that one. Good luck and have a great day.