We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Thank you for posting your math problem here. To convert 3.9x10^5mg to dg the answer is <span>3.9 x 10^3 dg. Below is the solution:
Solution:
</span><span>1mg=0.01dg
</span><span> dg= 3.9 X 10^5mg
</span>dg = <span>(3.9 X 10^5) x 0.01
dg = </span><span>3.9 x 10^3 </span>
V = nRT/P
V = 0.685 mol*(.0821 L*atm/K*mol)*273 K/1 atm
Answer:
barium and silicon has same valence electrons
Explanation:
barium-2,8,18,18,8,2
neon-2,8
silicon-2,8,2,2
carbon-2,4
Answer: At the point when space experts take a gander at an article's range, they can decide its arrangement dependent on these frequencies. The most well-known technique stargazers use to decide the sythesis of stars, planets, and different articles is spectroscopy. This spread-out light is known as a range.
Explanation: