1. Berkelium(Berkeley, CA) 2. Dubnium(Dubna, Russia) 3. Darmstaditum (Darmstadt, Germany) 4. Erbium(Ytterby, Sweden) 5. Strontium(Strontian, Scotland) 6. Terbium(Ytterby, Sweden) 7. Yttebium(Ytterby, Sweden) 8. Yttrium(Ytterby, Sweden)
The average atomic weight is, from the name itself, the average weight of all its naturally occurring isotopes. All you have to do is multiple the abundance of each isotope with its individual mass, then add them altogether.
Mass = (0.10*55)+(0.15*56)+(.75*57)
<em>Mass = 56.65 amu</em>
Answer:
D. 5.6 g/cm^3
Explanation:
On the average seismic velocity increases with increase in depth due higher the pressure and more compaction
sand and shales in the Niger Delta Basin density–velocity relationship is
P = 0.31×V^0.25
A derivation of the original Gardner equation to calculate the average densities for sands and shales in wells.
ρ = α ×V^β
where
ρ = bulk density in g/cm3,
V = P-wave velocity,
α = 0.31 for V (m/s) and 0.23 for V(ft/s) and
β = 0.25.
Such that
ρ = 0.31 ×V^0.25
So the fastest seismic velocity will be in the densest material which is D. 5.6 g/cm3
Answer:
The correct answer is "The coffee in the jug has more thermal energy than the coffee in the cup".
Explanation:
First I had to look for the problem to know the possible answers.
In this case, the coffee jug has a large amount of coffee at the same temperature. If we analyze that the decanter and the coffee are at the same temperature, we have a homogeneous thermal system. The cup is at room temperature, so by pouring coffee into it, the temperature of the coffee decreases to balance with the temperature of the cup. At this moment, the temperature of the cup-cafe system is lower than the jug-cafe system.
Thermal energy is the part of the internal energy of an equilibrated thermodynamic system that is proportional to its absolute temperature and increases or decreases by energy transfer.
In this way, we can ensure that the thermal energy of the cup-cafe system is lower than that of the jug-cafe system.
Have a nice day!