<span>Given in the question-
1 mole of cyclohexanol = > 1 mole of cyclohexene
Molar mass 100.16 g/mol
moles of cyclohexanol = .240 / 100.16= 0.002396 moles
Molar mass 82.143 g/mol
moles of cyclohexene formed @100 % yield = 0.002396
Molar mass 82.143 g/mol
mass of cyclohexene @ 100 % = .002396 x 82.143 = 0.197g
bur we have .138g
so % yield = .138 / .197 = 70.0 %
Ans- 70 percentage yield of cyclohexene.</span>
The direction of the magnetic field would be going up.
Answer: Option D is correct.
Explanation: Equation given by de Broglie is:

where,
= wavelength of the particle
h = Planck's constant
m = mass of the particle
v = velocity of the particle
In option A, football will have some mass and is moving with a velocity of 25 m/s, hence it will have some wavelength.
In Option B, unladen swallow also have some mass and is moving with a velocity of 38 km/hr, hence it will also have some wavelength.
In Option C, a person has some mass and is running with a velocity of 7 m/hr, hence it will also have some wavelength.
As, the momentum of these particles are large, therefore the wavelength will be of small magnitude and hence, is not observable.
From the above, it is clearly visible that all the options are having some wavelength, so option D is correct.
C. Planets can move at a varying speed due to forces exerted in space.
Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A = 
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then
x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D