Answer:
1 mole of ferric contains 2 moles of iron,and 12 moles of oxygen atoms, and three moles of sulphate ions
Answer:
read down below
Explanation:
Building on the Curies' work, the British physicist Ernest Rutherford (1871–1937) performed decisive experiments that led to the modern view of the structure of the atom. ... Because it was the first kind of radiation to be discovered, Rutherford called these substances α particles.
First calculate for the molar mass of the given formula unit, CaCO₃. This can be done by adding up the product when the number of atom is multiplied to its individual molar mass as shown below.
molar mass of CaCO₃ = (1 mol Ca)(40 g Ca/mol Ca) + (1 mol C)(12 g of C/1 mol of C) + (3 mols of O)(16 g O/1 mol O) = 100 g/mol of CaCO₃
Then, divide the given amount of substance by the calculated molar mass.
number of moles = (20 g)(1 mol of CaCO₃/100 g)
number of moles = 0.2 moles of CaCO₃
<em>Answer: 0.2 moles</em>
It's el mapa so the answer is incorrect. Even though mapa has an 'a' at the end, you will still use el.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration of
that should used originally is 
Explanation:
From the question we are told that
The necessary elementary step is

The time taken for sixth of 0.5 M of reactant to react 
The time available is 
The desired concentration to remain
Let Z be the reactant , Y be the first product and X the second product
Generally the elementary rate law is mathematically as

Where k is the rate constant ,
is the concentration of Z
From the elementary rate law we see that the reaction is second order (This because the concentration of the reactant is raised to power 2 )
For second order reaction

Where
is the initial concentration of Z which a value of 
From the question we are told that it take 9 hours for the concentration of the reactant to become


So


=> 
For 




