Answer:
43.75 ml
Explanation:
Given that the equation of the reaction is;
2HNO3(aq) + Ca(OH)2(aq) ---> Ca(NO3)2(aq) + 2 H20(l)
Concentration of acid CA= 0.05 M
Concentration of base CB = 0.02 M
Volume of acid VA = 35.00ml
Volume of base VB= ???
Number of moles of acid NA= 2
Number of moles of base NB=1
From
CAVA/CBVB= NA/NB
Making VB the subject of the formula;
VB= CAVANB/CBNA
VB= 0.05 × 35 × 1/ 0.02 × 2
VB=1.75 /0.04
VB= 43.75 ml
Answer:
1.16L can be made
Explanation:
Molarity = Mol / Volume
Volume = Mol / Molarity
Let's determine the moles of salt, with that mass:
130 g FeCl₂ . 1mol / 126.75 g = 1.02 moles of FeCl₂
Volume = 1.02 mol / 0.88 mol/L → 1.16L
The –OH+ group is most acidic proton in ln-OH as shown in figure (a). The proton is circled in the figure.
The stabilisation of the conjugate base produced is stabilises due to resonance factor. The possible resonance structures are shown in figure (b).
The acidity of a protonated molecule depends upon the stabilisation of the conjugate base produced upon deprotonation. The conjugate base of ln-OH is shown in figure (a).
The possible resonance structures are shown in figure (b). As the number of resonance structures of the conjugate base increases the stabilisation increases. Here the unstable quinoid (unstable) form get benzenoid (highly stable) form due to the resonance which make the conjugate base highly stabilise.
Thus the most acidic proton is assigned in ln-OH and the stability of the conjugate base is explained.
I’m sorry if I wasted your time but I think it’s alkali metals but I’m
Not sure