1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
2 years ago
11

Breanna is standing beside a merry-go-round pushing 19° from the tangential direction and is able to accelerate the ride and her

friends from rest to a frequency of 10 rpm in 9 seconds. Assume the merry-go-round is a uniform disc of radius 2.3 m and has a mass of 750 kg. Rachel (48 kg) and Tayler (46 kg) sit opposite each other on the edge of the ride.
(A) What for did Breanna push with?
(B) How much work did Breanna do?
Physics
1 answer:
leva [86]2 years ago
7 0

To solve the problem it is necessary to apply the concepts given in the kinematic equations of angular motion that include force, acceleration and work.

Torque in a body is defined as,

\tau_l = F*d

And in angular movement like

\tau_a = I*\alpha

Where,

F= Force

d= Distance

I = Inertia

\alpha = Acceleration Angular

PART A) For the given case we have the torque we have it in component mode, so the component in the X axis is the net for the calculation.

\tau= F*cos(19)*d

On the other hand we have the speed data expressed in RPM, as well

\omega_f = 10rpm = 10\frac{1rev}{1min}(\frac{1min}{60s})(\frac{2\pi rad}{1rev})

\omega_f = 1.0471rad/s

Acceleration can be calculated by

\alpha = \frac{\omega_f}{t}

\alpha = \frac{1.0471}{9}

\alpha = 0.11rad/s^2

In the case of Inertia we know that it is equivalent to

I = \frac{1}{2}mr^2 = \frac{1}{2}(750)*(2.3)^2

I = 1983.75kg.m^2

Matching the two types of torque we have to,

\tau_l=\tau_a

Fd=I\alpha

Fcos(19)*2.3=1983.75(0.11)

F=100.34N

PART B) The work performed would be calculated from the relationship between angular velocity and moment of inertia, that is,

W = \frac{1}{2}I\omega_f^2

W= \frac{1}{2}(1983.75)(1.0471)^2

W=1087.51J

You might be interested in
According to the chart, one gram of copper and
ad-work [718]

Answer:

C) three

Explanation:

Let gram of gold required be m . Let temperature change in both be Δ t .

heat absorbed = mass x specific heat x change in temperature

for copper

heat absorbed = 1 x .385 x Δt

for gold

heat absorbed = m x .129 x Δt

So

m x .129 x Δt = 1 x .385 x Δt

m = 2.98

= 3 g approximately .

4 0
2 years ago
You throw a tennis ball straight up (neglect air resistance). It takes 7.0 seconds to go up and then return to your hand. How fa
sattari [20]

Answer:

Velocity of throwing = 34.335 m/s

Explanation:

Time taken by the tennis ball to reach maximum height, t = 0.5 x 7 = 3.5 seconds.

Let the initial velocity be u, we have acceleration due to gravity, a = -9.81 m/s² and final velocity = 0 m/s

Equation of motion result we have v = u + at

Substituting

             0 = u - 9.81 x 3.5

             u = 34.335 m/s

Velocity of throwing = 34.335 m/s

6 0
3 years ago
A stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. What is the spe
KIM [24]

Answer: V = 15 m/s

Explanation:

As  stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,

F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz

Using doppler effect formula

F = C/ ( C - V) × f

Where

F = observed frequency

f = source frequency

C = speed of light = 3×10^8

V = speed of the car

Substitute all the parameters into the formula

2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10

2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)

1.000000049 = 3×10^8/(3×10^8 - V)

Cross multiply

300000014.7 - 1.000000049V = 3×10^8

Collect the like terms

1.000000049V = 14.71429

Make V the subject of formula

V = 14.71429/1.000000049

V = 14.7 m/s

The speed of the car is 15 m/s approximately.

8 0
2 years ago
A stunt driver drives a car horizontally off the edge of a cliff at 3.8m/s and reaches the water below 2.5s later.
andreyandreev [35.5K]
A. The cliff was 30.7 m high
B. I also got 9.5 as the horizontal distance

Here is my work, I find making charts like this one to find knowns and unknowns can be helpful

4 0
3 years ago
What are the ending materials produced from cell respiration
Lunna [17]
Carbon dioxide and water :) hope this helped!
5 0
2 years ago
Read 2 more answers
Other questions:
  • After an eye examination, you put some eyedrops on your sensitive eyes. The cornea (the front part of the eye) has an index of r
    8·1 answer
  • CO2 , NaCl , HCl can be classified as ?
    8·1 answer
  • A convex lens is placed on a flat glass plate and illuminated from above with monochromatic red light. When viewed from above, c
    5·1 answer
  • jim(mass=100kg) rollerblades on a smooth horizontal floor at a constant speed of 2.0 m/s for a distance of 5m in 5 seconds. What
    11·1 answer
  • How would you find force of the ping pong ball rolling down the track?
    9·1 answer
  • YOU GUYS HELPPPPPPPPPPPPPPPP!!!!!! PLEAZEEEE
    5·2 answers
  • Please help me. Thank you!
    10·1 answer
  • An endergonic reaction is a reaction that is characterized by Select one: a. having products with lower energy than the reactant
    6·1 answer
  • Kūna veikia 3N jėga kurios petys 20 cm. Koks jos momentas?​
    9·1 answer
  • Encontrar el peso de un elefante cuya masa es de 4500kg. Recordar que la gravedad es de 9.8m/s2
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!