As the cube size increases or the cell gets bigger , then the surface area to volume ratio - SA:V ratio decreases. When an object/cell is very small, it has a large surface area to volume ratio, while a large object/ cell has a small surface area to volume ratio.
A rock is dropped from a 200 m high cliff. How long does it take to fall (a) the first 100 m and (b) the last 50 m?
The basic equation you want is:
s=at22
Solving for t:
t=2sa−−−√
We’ll assume a=9.8 , so 2a−−√=14.9−−−√≈0.4518
So, for (a)s=100 , so t=0.4518100−−−√=4.518
The total time is 0.4518200−−−√≈6.389
The time to fall 150 m is 0.4518150−−−√≈5.533
So the time to fall the last 50 m is 6.389 - 5.533 = 0.856 seconds
(
All fossil fuels are formed deep underground. they are all nonrenewable energy
Answer: 1. higher than it was before they started running
Explanation: As the vacationers run towards the back(stern) of the ship the exerting more pressure against the pressure exerted by the wave supporting the moving ship,the pressure exerted on the moving ship will be increased, leading to a slight increase in the speed of the ship compared to the speed before they started running towards the back(stern) of the ship.
Using the formula v=f times lambada
then v=the speed of light.
and f=what’s we’re looking for
and lambada=the wavelength.
so then you sub what you have (v and lambada) in the formula.
then multiply the frequency(f) by the given wavelength and then solve for f