Answer:
Anita 's power rating during this portion of the climb is 1568 Watts.
Explanation:
Given that,
Mass of the body, m = 800 kg
Height, h = 20 m
Time, t = 100 s
We need to find the Anita 's power rating during this portion of the climb. Power rating of an object is given by the work done per unit time. It is given by :



P = 1568 Watts
So, Anita 's power rating during this portion of the climb is 1568 Watts. Hence, this is the required solution.
There are two types of equilibrium in mechanics.One is called static equilibrium and the other one is called dynamic equilibrium. In both the cases of mechanical equilibrium,the net force acting on the particle is zero.
A body is said to be in dynamic equilibrium if the net force acting on a moving body is zero.There will be no acceleration of the body.The body will continue its uniform motion without change in its direction and speed.
The body is said to be in static equilibrium if the net force acting on a body at rest is zero.As the net force is zero,the body will not undergo motion. It is due to the inertia of the body.
The two equilibrium are the direct consequences of Newton's first law which tells that a body will continue to be at state of rest or uniform motion along a straight line unless and until it is compelled by some external unbalanced force.Hence as long as net force on the body is zero,the body at rest will satisfy static equilibrium.
Out of the four options given in the question only third option is right which tells that a book that has no net force acting on it and sitting on a table is under static equilibrium. If the net force is not zero,the body can not be under static equilibrium.The book resting on a table imparts a force equal to its weight on the table and table in turn gives the normal reaction in vertically upward direction.The gravity pulls the book in vertically downward direction with a force equal to its weigh.Hence the net force is zero.So the table will be at rest.
If the net force is not zero,the body can not be under static equilibrium.
Hence option 3 is right.
Answer:
Color
Explanation:
Thus, for stars, considering them as “black bodies”, we can get an approximate figure for their temperature by measuring their dominant frequency (color). Technically scientists measure the brightness of the blue light and that of red light from the star, and from this they can calculate the temperature of the star.
The correct answer is: Option (D) length, speed
Explanation:
According to Faraday's Law of Induction:
ξ = Blv
Where,
ξ = Emf Induced
B = Magnetic Induction
l = Length of the conductor
v = Speed of the conductor.
As you can see that ξ (Emf/voltage induction) is directly proportional to the length and the speed of the conductor. Therefore, the correct answer will be Option (D) Length, Speed
Move with constant speed or accelerate and will determine direction