The box is kept in motion at constant velocity by a force of F=99 N. Constant velocity means there is no acceleration, so the resultant of the forces acting on the box is zero. Apart from the force F pushing the box, there is only another force acting on it in the horizontal direction: the frictional force

which acts in the opposite direction of the motion, so in the opposite direction of F.
Therefore, since the resultant of the two forces must be zero,

so

The frictional force can be rewritten as

where

,

. Re-arranging, we can solve this equation to find

, the coefficient of dynamic friction:
1- Kinetic , Mass , Speed
2- Speed
3- Speed, Mass
4- Mass, More
5- Transferred, collide
6- Kinetic, electricity
7- Transferred, Destroyed
:)
Answer:
119.88 km/h
Explanation:
1500/45=33.3
use a m/s to km/h calculator
put in 33.3 for m/s and you will get 119.88 km/h.
119.88 km/h.
Answer:
40 N
Explanation:
We first need to calculate the acceleration of the tron ball.
Since acceleration, a = (v - u)/t where u = initial velocity of iron ball = 17m/s, v = final velocity of iron ball = 27m/s and t = time taken for the change in velocity = 5 s.
So, a = (v - u)/t
= (27 m/s - 17 m/s)/5 s
= 10 m/s ÷ 5 s
= 2 m/s²
We know force on iron ball, F = ma where m = mass of iron ball = 20 kg and a = acceleration = 2 m/s²
So, F = ma
= 20 kg × 2 m/s²
= 40 kgm/s²
= 40 N
So, the magnitude of the force on the iron ball is 40 N.
Answer:
second
Explanation:
the first let's everything appear red, the send would produce black(-ish) words on paper that's appealing blue