1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yan [13]
3 years ago
7

Air in a piston–cylinder assembly, initially at 3 bar, 142 K, and a volume of 2 m3. The air undergoes a process to a state where

the pressure is 1.5 bar, during which the pressure–volume relationship is pV = constant. Assuming ideal gas behavior for the air, determine: the mass of the air, in kg and the work and heat transfer, each in KJ.

Engineering
2 answers:
sladkih [1.3K]3 years ago
7 0
<h2>Answer:</h2>

(a) 14.72 kg

(b) 414 kJ

(c) 414 kJ

<h2>Explanation:</h2>

(a) To get the mass of the air, the ideal gas equation will be used and is given as follows;

PV = mRT            ----------------(i)

Where;

P = pressure of the air = 3 bar = 3 x 10⁵Pa

V = volume of the air = 2m³

m = mass of air

R = specific gas constant of air = 287.05 \frac{J}{kgK}

T = temperature of the air = 142K

<em>Substitute these values into equation (i) as follows;</em>

3 x 10⁵ x 2 = m x 287.05 x 142

6 x 10⁵ = m x 40761.1

600000 = 40761.1m

m = \frac{600000}{40761.1}

m = 14.72kg

Therefore, the mass of the air is 14.72 kg

(b) According to the question, the relationship between the pressure and the volume is given by

PV = k         (where k = constant)

This implies that;

P₁V₁ = P₂V₂ = ... = k           -------------------(ii)

Where;

P₁ = initial pressure of air = 3 bar = 3 x 10⁵Pa

V₁ = initial volume of air = 2m³

P₂ = final pressure of air = 1.5 bar = 1.5 x 10⁵Pa

V₂ = final volume of air

<em>Substitute these values into equation (ii) as follows;</em>

3 x 10⁵ x 2 = 1.5 x 10⁵ x V₂

6 x 10⁵ = 1.5 x 10⁵V₂

6 = 1.5V₂

V₂ = \frac{6}{1.5}

V₂ = 4m³

Also, from equation (ii)

P₁V₁ = k               --------------(iii)

Substitute the values of P₁ and V₁ into equation (iii) as follows;

3 x 10⁵ x 2 = k

k = 6 x 10⁵ m³Pa

Recall that PV = k

This implies that;

P = \frac{k}{V}            ------------(iv)

Also, remember, in thermodynamics the work done, W, when a gas expands or compresses in volume is given by the following;

W = \int\limits^{V_2}_{V_1} {P} \, dV

<em>Substitute the value of P in equation (iv) into the above equation as follows;</em>

W = \int\limits^{V_2}_{V_1} {\frac{k}{V} } \, dV

W = k \int\limits^{V_2}_{V_1} {\frac{1}{V} } \, dV

W = k \int\limits^{V_2}_{V_1} {V^{-1} } \, dV

<em>Integrating gives;</em>

W = k ln [V]                -----------------(v)

<em>Putting the values of the integral limits V₁ and V₂ </em>into equation (v)

W = k ln [V₂ - V₁]

<em>Substitute the values of k, V₂ and V₁ into equation above as follows;</em>

W = 6 x 10⁵ ln [4 - 2]

W = 6 x 10⁵ ln [2]

W = 6 x 10⁵ (0.69)

W = 4.14 x 10⁵

W = 414 kJ

Therefore, the work done is 414 kJ

(c) The heat transfer Q, the work done, W, and the change in internal energy, ΔU, in a thermodynamic system are related by the following relation;

Q - W = ΔU                  ----------(vi)

If the values of P₂, V₂ are substituted into equation (i) to find the value of T₂, it will be found that T₁ and T₂ are the same. i.e T₁ = T₂ = 142K. Therefore, the change in internal energy, ΔU = 0.

Equation (vi) the becomes

Q - W = 0

Q = W            [Substitute the value of W = 414 kJ]

Q = 414 kJ

Therefore, the heat transfer is 414 kJ

Archy [21]3 years ago
6 0

Answer:

mass of the air = 14.62kg

Workdone = 415.88 kJ

Heat transfer = 415.88 kJ

Explanation:

Please find the attached files for the solution

You might be interested in
The creation of designer drugs is outpacing the ability of society to enact laws to prohibit them. Many of these substances have
Andreas93 [3]

Answer:

The creation of "designer drugs" is outpacing the ability of society to enact laws to prohibit them.  Many of these substances have negative side effects, ranging from violent behavior to death.

 

40.  Which of the following responses to the problem would best fit the "crime control" philosophy?

a.  Government takes steps to limit the availability of ingredients used in the manufacture of designer drugs.

b.  Design a public awareness campaign to warn potential users of the dangers presented by use of these drugs.

c.  Partner with community leaders to identify underlying social issues promoting the drug subculture.

d.  Pass legislation and increase enforcement efforts to send a message of "zero tolerance" to those who manufacture, sell, and use designer drugs

The answer to the above question is

d.  Pass legislation and increase enforcement efforts to send a message of "zero tolerance" to those who manufacture, sell, and use designer drugs

Explanation:

State governments, naturally provide early response to the domestic issue of designer drug abuse than the federal government through the early banning of synthetic drug use.

State legislation on restricting designer drug use can be defined into three groups including

1. Specific synthetic substance ban

2. Ban on generic language

3. Ban based on the effect a substance has on the body.

It can be clearly demonstrated that legislation which combines this three categories is highly effective in reducing the supply and use of designer drugs.

3 0
3 years ago
As of January 1, 2018, Farley Co. had a credit balance of $534,000 in its allowance for uncollectible accounts. Based on experie
zepelin [54]

Answer:

Mah dood! I gatchu! Dae ansa iz A! I gatchu fam! I gatchu Brochacho!

Explanation:

3 0
3 years ago
What is a shearing stress? Is there a force resulting from two solids in contact to which is it similar?
Luba_88 [7]

Answer:

Shearing stresses are the stresses generated in any material when a force acts in such a way that it tends to tear off the material.

Generally the above definition is valid at an armature level, in more technical terms shearing stresses are the component of the stresses that act parallel to any plane in a material that is under stress. Shearing stresses are present in a body even if normal forces act on it along the centroidal axis.

Mathematically in a plane AB the shearing stresses are given by

\tau =\frac{Fcos(\theta )}{A}

Yes the shearing force which generates the shearing stresses is similar to frictional force that acts between the 2 surfaces in contact with each other.  

7 0
3 years ago
Two wastewater treatment plant workers (one male and one female) are exposed to hydrogen sulfide in confined spaces in the treat
Vlada [557]

Answer:

Go to explaination for the details of the answer.

Explanation:

In order to determine the lifetime (75 years) chronic daily exposure for each individual, we have to first state the terms of our equation:

CDI = Chronic Daily Intake

C= Chemical concentration

CR= Contact Rate

EFD= Exposure Frequency and Distribution

BW= Body Weight

AT = Average Time.

Having names our variables lets create the equations that will be used to derive our answers.

Please kindly check attachment for details of the answer.

5 0
3 years ago
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
Other questions:
  • If a ball is dropped from a height​ (H) its velocity will increase until it hits the ground​ (assuming that aerodynamic drag due
    5·1 answer
  • Ammonia enters an adiabatic compressor operating at steady state as saturated vapor at 300 kPa and exits at 1400 kPa, 140◦C. Kin
    11·1 answer
  • Design a posttest-only experiment that would test each of the following causal claims. For each one, identify the study’s indepe
    13·1 answer
  • An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle
    7·2 answers
  • Water discharging into a 10-m-wide rectangular horizontal channel from a sluice gate is observed to have undergone a hydraulic j
    12·1 answer
  • 1. Pump extracts energy from a flowing fluid. _______
    10·1 answer
  • W
    7·1 answer
  • Compare and contrast mechanical properties of plastics, metals and ceramics.
    13·1 answer
  • Technician A says that synthetic blend oil has the same service life as that of full synthetic oils. Technician B says that conv
    6·1 answer
  • when a unit load is secured to a pallet, it is more difficult for pilferage to take place. true false
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!