1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yan [13]
3 years ago
7

Air in a piston–cylinder assembly, initially at 3 bar, 142 K, and a volume of 2 m3. The air undergoes a process to a state where

the pressure is 1.5 bar, during which the pressure–volume relationship is pV = constant. Assuming ideal gas behavior for the air, determine: the mass of the air, in kg and the work and heat transfer, each in KJ.

Engineering
2 answers:
sladkih [1.3K]3 years ago
7 0
<h2>Answer:</h2>

(a) 14.72 kg

(b) 414 kJ

(c) 414 kJ

<h2>Explanation:</h2>

(a) To get the mass of the air, the ideal gas equation will be used and is given as follows;

PV = mRT            ----------------(i)

Where;

P = pressure of the air = 3 bar = 3 x 10⁵Pa

V = volume of the air = 2m³

m = mass of air

R = specific gas constant of air = 287.05 \frac{J}{kgK}

T = temperature of the air = 142K

<em>Substitute these values into equation (i) as follows;</em>

3 x 10⁵ x 2 = m x 287.05 x 142

6 x 10⁵ = m x 40761.1

600000 = 40761.1m

m = \frac{600000}{40761.1}

m = 14.72kg

Therefore, the mass of the air is 14.72 kg

(b) According to the question, the relationship between the pressure and the volume is given by

PV = k         (where k = constant)

This implies that;

P₁V₁ = P₂V₂ = ... = k           -------------------(ii)

Where;

P₁ = initial pressure of air = 3 bar = 3 x 10⁵Pa

V₁ = initial volume of air = 2m³

P₂ = final pressure of air = 1.5 bar = 1.5 x 10⁵Pa

V₂ = final volume of air

<em>Substitute these values into equation (ii) as follows;</em>

3 x 10⁵ x 2 = 1.5 x 10⁵ x V₂

6 x 10⁵ = 1.5 x 10⁵V₂

6 = 1.5V₂

V₂ = \frac{6}{1.5}

V₂ = 4m³

Also, from equation (ii)

P₁V₁ = k               --------------(iii)

Substitute the values of P₁ and V₁ into equation (iii) as follows;

3 x 10⁵ x 2 = k

k = 6 x 10⁵ m³Pa

Recall that PV = k

This implies that;

P = \frac{k}{V}            ------------(iv)

Also, remember, in thermodynamics the work done, W, when a gas expands or compresses in volume is given by the following;

W = \int\limits^{V_2}_{V_1} {P} \, dV

<em>Substitute the value of P in equation (iv) into the above equation as follows;</em>

W = \int\limits^{V_2}_{V_1} {\frac{k}{V} } \, dV

W = k \int\limits^{V_2}_{V_1} {\frac{1}{V} } \, dV

W = k \int\limits^{V_2}_{V_1} {V^{-1} } \, dV

<em>Integrating gives;</em>

W = k ln [V]                -----------------(v)

<em>Putting the values of the integral limits V₁ and V₂ </em>into equation (v)

W = k ln [V₂ - V₁]

<em>Substitute the values of k, V₂ and V₁ into equation above as follows;</em>

W = 6 x 10⁵ ln [4 - 2]

W = 6 x 10⁵ ln [2]

W = 6 x 10⁵ (0.69)

W = 4.14 x 10⁵

W = 414 kJ

Therefore, the work done is 414 kJ

(c) The heat transfer Q, the work done, W, and the change in internal energy, ΔU, in a thermodynamic system are related by the following relation;

Q - W = ΔU                  ----------(vi)

If the values of P₂, V₂ are substituted into equation (i) to find the value of T₂, it will be found that T₁ and T₂ are the same. i.e T₁ = T₂ = 142K. Therefore, the change in internal energy, ΔU = 0.

Equation (vi) the becomes

Q - W = 0

Q = W            [Substitute the value of W = 414 kJ]

Q = 414 kJ

Therefore, the heat transfer is 414 kJ

Archy [21]3 years ago
6 0

Answer:

mass of the air = 14.62kg

Workdone = 415.88 kJ

Heat transfer = 415.88 kJ

Explanation:

Please find the attached files for the solution

You might be interested in
What is another term for the notes that a reader can add to text in a word-processing document?
melamori03 [73]

Answer:

annotations maybe?

4 0
3 years ago
Read 2 more answers
g A food department is kept at -12oC by a refrigerator in an environment at 30oC. The total heat gain to the food department is
boyakko [2]

Answer:

a) \dot W = 0.417\,kW, b) COP_{R} = 2.198, c) Irreversible.

Explanation:

a) The power input required by the refrigerator is:

\dot W = \dot Q_{H} - \dot Q_{L}

\dot W = \left(4800\,\frac{kJ}{h} - 3300\,\frac{kJ}{h}\right)\cdot \left(\frac{1}{3600} \,\frac{h}{s} \right)

\dot W = 0.417\,kW

b) The Coefficient of Performance of the refrigerator is:

COP_{R} = \frac{\dot Q_{L}}{\dot W}

COP_{R} = \frac{3300\,\frac{kJ}{h} }{(0.417\,kW)\cdot \left(3600\,\frac{s}{h} \right)}

COP_{R} = 2.198

c) The maximum ideal Coefficient of Performance of the refrigeration is given by the inverse Carnot's Cycle:

COP_{R,ideal} = \frac{T_{L}}{T_{H}-T_{L}}

COP_{R,ideal} = \frac{261.15\,K}{303.15\,K - 261.15\,K}

COP_{R,ideal} = 6.218

The refrigeration cycle is irreversible, as COP_{R} < COP_{R,ideal}.

3 0
3 years ago
There are 20 forging presses in the forge shop of a small company. The shop produces batches of forgings requiring a setup time
Aleksandr-060686 [28]

Answer:

Considering the guidelines of this exercise.

The pieces produced per month are 504 000

The productivity ratio is 75%

Explanation:

To understand this answer we need to analyze the problem. First of all, we can only produce 2 batches of production by the press because we require 3 hours to set it up. So if we rest those 6 hours from the 8 of the shift we get 6, leaving 2 for an incomplete bath. So multiplying 2 batches per day of production by press we obtain 40 batches per day. So, considering we work in this factory for 21 days per month well that makes 40 x 21  making 840 then we multiply the batches for the pieces 840 x 600 obtaining 504000 pieces produced per month. To obtain the productivity ratio we need to divide the standard labor hours meaning 6 by the amount of time worked meaning 8. Obtaining 75% efficiency.

4 0
3 years ago
How might an operations manager alter operations to meet customer demand? Name at least two ways.
Citrus2011 [14]
One way is manager changes itself and the other one is the same thing i think.
4 0
3 years ago
The mass flow rate in a 4.0-m wide, 2.0-m deep channel is 4000 kg/s of water. If the velocity distribution in the channel is lin
IceJOKER [234]

Answer:

V = 0.5 m/s

Explanation:

given data:

width of channel =  4 m

depth of channel = 2 m

mass flow rate = 4000 kg/s = 4 m3/s

we know that mass flow rate is given as

\dot{m}=\rho AV

Putting all the value to get the velocity of the flow

\frac{\dot{m}}{\rho A} = V

V = \frac{4000}{1000*4*2}

V = 0.5 m/s

4 0
4 years ago
Other questions:
  • A three-phase, 480 Volt, 120 horsepower, 50 Hertz four-pole induction motor delivers rated output power at a slip of 4%. Determi
    12·2 answers
  • Steam at 150 bars and 600°C passes through process equipment and emerges at 100 bars and 700°C. There is no flow of work into or
    8·1 answer
  • Assume a person is making a 350 mile trip from Amherst to Washington DC has four modes available to them: air; auto; train; ship
    10·1 answer
  • Consider a large plane wall of thickness L = 0.3 m, thermal conductivity k = 2.5 W/m · °C, and surface area A =12 m2. The left s
    6·1 answer
  • Compute the longitudinal tensile strength of an aligned glass fiber-epoxy matrix composite in which the average fiber diameter a
    9·1 answer
  • is sampled at a rate of to produce the sampled vector and then quantized. Assume, as usual, the minimum voltage of the dynamic r
    9·1 answer
  • Certain pieces made by an acoustic lathe are subject to three kinds of defects X,Y,Z. A sample of 100 pieces was inspected with
    6·1 answer
  • ‘Politics and planning are increasingly gaining prominence in contemporary urban and regional planning debates’. Using relevant
    9·2 answers
  • A particular cloud-to-ground lightning strike lasts 500 µµsec and delivers 30 kA across a potential difference of 100 MV. Assu
    14·1 answer
  • your friend's parents are worried about going over their budget for th month. Which expense would you suggest is NOT a need?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!