Answer:
Kawasaki Ninja H2R – top speed: 222 mph. This one is another beast in the form of a bike. ...
MTT Turbine Superbike Y2K – top speed: 227 mph. This bike is one of the most powerful production motorcycles. ...
Suzuki Hayabusa – top speed: 248 mph. 1340cc
Answer:
5.6 mm
Explanation:
Given that:
A cylindrical tank is required to contain a:
Gage Pressure P = 560 kPa
Allowable normal stress
= 150 MPa = 150000 Kpa.
The inner diameter of the tank = 3 m
In a closed cylinder there exist both the circumferential stress and the longitudinal stress.
Circumferential stress 
Making thickness t the subject; we have


t = 0.0056 m
t = 5.6 mm
For longitudinal stress.



t = 0.0028 mm
t = 2.8 mm
From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value with the maximum thickness = 5.6 mm
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.
Answer: 24 pA
Explanation:
As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.
Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵ Ω cm.
The resistance R of a given resistor, is expressed by the following formula:
R = ρ L / A
Replacing by the values for resistivity, L and A, we have
R = 2.1. 10⁵ Ω cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2
R = 2.1. 10¹¹ Ω
Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:
I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA
Answer:
Tech A is correct.
Explanation:
An electric brake controller is a device that sends a signal to the trailer via vehicle's brakes. This reduces the wear and tear on the vehicle brakes. As a result, the vehicle stops.
Tech A says that bleeding an electronic brake control system is just like bleeding a non-electronic brake control system.
So,
Tech A is correct.