Answer:
Maximum number that can be represented by 13 bits is 8192 Instructions
Explanation:
number of instructions = 1000
number of bits = log(1000) x number of register
= 6 bits
Since the complete instruction must have 32 bits, then
remaining number of bits = 32 - 6 = 236
number of registers in instruction = 2
number of bits per register = 26/2 = 13
Maximum number that can be represented by 13 bits = 
= 2¹³ = 8192
Answer:
<em>Electric current is the movement of electrons through a wire. Electric current is measured in amperes (amps) and refers to the number of charges that move through the wire per second. If we want current to flow directly from one point to another, we should use a wire that has as little resistance as possible.</em><em>Current is directly proportional to voltage, inversely proportional to resistance. One of the most common electrical measurements you'll use is the watt, a unit of electrical power: W (Watts) = E (Volts) x I (Amperes). The quantity of electric charge is measured in coulombs.</em><em>They can even pass through bones and teeth. This makes gamma rays very dangerous. They can destroy living cells, produce gene mutations, and cause cancer.</em>
Explanation:
hey mate this is the best answer if you're studying engineering!
Answer:
Enthalpy is a function of pressure hence normalized enthalpy departure values will approach zero with reduced pressure approaching zero
Explanation:
On the generalized enthalpy departure chart, the normalized enthalpy departure values seem to approach zero as the reduced pressure PR approaches zero. this is because enthalpy is a function of pressure therefore as the Pressure is reducing towards the zero value, the gas associated with the pressure tends to behave more like an Ideal gas.
For an Ideal gas the Normalized enthalpy departure value will be approaching the zero value.