1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
4 years ago
12

A thin aluminum rod lies along the x-axis and has current of I = 16.0 A running through it in the +x-direction. The rod is in th

e presence of a uniform magnetic field, perpendicular to the current. There is a magnetic force per unit length on the rod of 0.113 N/m in the −y-direction.
(a) What is the magnitude of the magnetic field (in mT) in the region through which the current passes?
(b) What is the direction of the magnetic field in the region through which the current passes?
Physics
1 answer:
coldgirl [10]4 years ago
3 0

Answer:

a) The magnitude of the magnetic field = 7.1 mT

b) The direction of the magnetic field is the +z direction.

Explanation:

The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by

F = (B)(I)(L) sin θ

F/L = (B)(I) sin θ

For this question,

(F/L) = 0.113 N/m

B = ?

I = 16.0 A

θ = 90°

0.113 = B × 16 × sin 90°

B = 0.113/16 = 0.0071 T = 7.1 mT

b) The direction of the magnetic field will be found using the right hand rule.

The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).

You might be interested in
Calculate the work against gravity required to build the right circular cone of height 4 m and base of radius 1.2 m out of a lig
Nana76 [90]

Answer:

Work done = 35467.278 J

Explanation:

Given:

Height of the cone = 4m

radius (r) of the cone = 1.2m

Density of the cone = 600kg/m³

Acceleration due to gravity, g = 9.8 m/s²

Now,

The total mass of the cone (m) = Density of the cone × volume of the cone

Volume of the cone = \frac{1}{3}\pi r^2 h

thus,

volume of the cone = \frac{1}{3}\pi 1.2^2\times 4 = 6.03 m³

therefore, the mass of the cone = 600 Kg/m³ × 6.03 m³ = 3619.11 kg

The center of mass for the cone lies at the \frac{1}{4}times the total height

thus,

center of mass lies at,  h' = \frac{1}{4}\times4=1m

Now, the work gone (W) against gravity is given as:

W = mgh'

W = 3619.11kg × 9.8 m/s² × 1 = 35467.278 J

4 0
3 years ago
Based on observations, the speed of a jogger can be approximated by the relation v 5 7.5(1 2 0.04x) 0.3, where v and x are expre
castortr0y [4]

Answer:

solution:

to find the speed of a jogger use the following relation:  

V

=

d

x

/d

t

=

7.5

×m

i

/

h

r

...........................(

1

)  

in Above equation in x and t. Separating the variables and integrating,

∫

d

x

/7.5

×=

∫

d

t

+

C

or

−

4.7619  

=

t

+

C

Here C =constant of integration.   

x

=

0  at  t

=

0

, we get:  C

=

−

4.7619

now we have the relation to find the position and time for the jogger as:

−

4.7619  =

t

−

4.7619

.

.

.

.

.

.

.

.

.

(

2

)

Here

x  is measured in miles and  t  in hours.

(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),    

     to get:

      = −

4.7619  

      =  

1

−

4.7619

      = −

3.7619

  or  x

=

7.15

m

i

l

e

s

(b) To find the jogger's acceleration in   m

i

l

/

differentiate  

     equation (1) with respect to time.

     we have to eliminate x from the equation (1) using equation (2).  

     Eliminating x we get:

     v

=

7.5×

     Now differentiating above equation w.r.t time we get:

      a

=

d

v/

d

t

       =

−

0.675

/

      At  

      t

=

0

      the joggers acceleration is :

       a

=

−

0.675

m

i

l

/

        =

−

4.34

×

f

t

/  

(c)  required time for the jogger to run 6 miles is obtained by setting  

        x

=

6  in equation (2).  We get:

        −

4.7619

(

1

−

(

0.04

×

6  )

)^

7

/

10=

t

−

4.7619

         or

         t

=

0.832

h

r

s

6 0
3 years ago
3
vodka [1.7K]

Answer:

3 electron hai bro of puch mujhe sab aata h

6 0
3 years ago
Read 2 more answers
A mixture of oil and water is place in a glass beaker and stirred.which picture depicts what is most likely to happen after the
erastovalidia [21]
H, I think. The oil has a lower density than the water, so after the 3 minutes it would float on top of the water.
3 0
3 years ago
A wire of length 6cm makes an angle of 20° with a 3 mT
Crazy boy [7]

Answer:

Approximately 7.3 \times 10^{-3}\; \rm A (approximately 7.3\; \rm mA) assuming that the magnetic field and the wire are both horizontal.

Explanation:

Let \theta denote the angle between the wire and the magnetic field.

Let B denote the magnitude of the magnetic field.

Let l denote the length of the wire.

Let I denote the current in this wire.

The magnetic force on the wire would be:

F = B \cdot l \cdot I \cdot \sin(\theta).

Because of the \sin(\theta) term, the magnetic force on the wire is maximized when the wire is perpendicular to the magnetic field (such that the angle between them is 90^\circ.)

In this question:

  • \theta = 20^\circ (or, equivalently, (\pi / 9) radians, if the calculator is in radian mode.)
  • B = 3\; \rm mT = 3 \times 10^{-3}\; \rm T.
  • l = 6\; \rm cm = 6 \times 10^{-2}\;\rm m.
  • F = 1.5\times 10^{-4}\; \rm N.

Rearrange the equation F = l \cdot I \cdot \sin(\theta) to find an expression for I, the current in this wire.

\begin{aligned} I &= \frac{F}{l \cdot \sin(\theta)} \\ &= \frac{3\times 10^{-3}\; \rm T}{6 \times 10^{-2}\; \rm m \times \sin \left(20^{\circ}\right)} \\ &\approx 7.3 \times 10^{-3}\; \rm A = 7.3 \; \rm mA\end{aligned}.

5 0
3 years ago
Other questions:
  • What is the most common consumed Halloween candy in the us after chocolate
    14·1 answer
  • Which type of mass movement makes a pattern of wrinkles, or terraces, on hillsides ?
    7·2 answers
  • An astronaut of mass 65kg in training rides in a seat that is moved in uniform circular motion by a radial arm 5.10 meters long.
    11·1 answer
  • A popular classroom demonstration is to place a gas can on a burner and boil water in it. Left unchecked this has the potential
    14·1 answer
  • Why is copper so widely sought world market and new york mercantile exchange?
    10·2 answers
  • A block is 10cm long, 5cm wide and 2cm high and weighs 100g. What is the volume of the block? What is the density?
    7·1 answer
  • What kind of destructive force or forces will most likely change the way Stone Mountain looks over the next million years? A) vo
    7·2 answers
  • Heeeeeeeeelp please ​
    10·2 answers
  • Three dogs (Spot, Fido, and Steinberg) are pulling on a chew toy. The chew toy is experiencing no acceleration. Spot is pulling
    8·1 answer
  • Hurryyyyy plzzzzzz..........the one in the middle...
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!