Jupiter Cannot Become A Star.
Jupiter Is The Fastest Spinning Planet In The Solar System.
The Clouds On Jupiter Are Only 50 km Thick.
Answer:
a) The centripetal acceleration of the car is 0.68 m/s²
b) The force that maintains circular motion is 940.03 N.
c) The minimum coefficient of static friction between the tires and the road is 0.069.
Explanation:
a) The centripetal acceleration of the car can be found using the following equation:

Where:
v: is the velocity of the car = 51.1 km/h
r: is the radius = 2.95x10² m

Hence, the centripetal acceleration of the car is 0.68 m/s².
b) The force that maintains circular motion is the centripetal force:

Where:
m: is the mass of the car
The mass is given by:

Where P is the weight of the car = 13561 N

Now, the centripetal force is:

Then, the force that maintains circular motion is 940.03 N.
c) Since the centripetal force is equal to the coefficient of static friction, this can be calculated as follows:



Therefore, the minimum coefficient of static friction between the tires and the road is 0.069.
I hope it helps you!
were solving for v velocity of the ball after it has hit the bottle. a. momentum ->p=mv->ball + bottle momentum during hit = ball + bottle momentum after hit-> ball (.5*21)+ bottle (.2*0) (it's 0 because the the bottle is standing still) = ball after hit (.5*v)+bottle after hit (.2*30) -> 10.5+0=.5v+6 ->4.5=.5v->v=9m/s
b. if bottle was heavier the ball would be slower so final velocity would decrease