1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
13

The dentisty of an object relies on both the _________ of the object.

Physics
1 answer:
Daniel [21]3 years ago
7 0

Answer:

Density is determined by an object's mass and volume.

Explanation:

If two objects take up the same volume, but one has more mass, then it also has a higher density.

You might be interested in
Consider a car travelling at 60 km/hr. If the radius of a tire is 25 cm, calculate the angular speed of a point on the outer edg
vlabodo [156]

To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.

From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

\omega = \frac{v}{R}

Where,

\omega =Angular velocity

v = Lineal Velocity

R = Radius

At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

\alpha = \frac{\omega}{t}

Where

\alpha =Angular acceleration

\omega = Angular velocity

t = Time

Our values are

v = 60\frac{km}{h} (\frac{1h}{3600s})(\frac{1000m}{1km})

v = 16.67m/s

r = 0.25m

t=6s

Replacing at the previous equation we have that the angular velocity is

\omega = \frac{v}{R}

\omega = \frac{ 16.67}{0.25}

\omega = 66.67rad/s

Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s

At the same time the angular acceleration would be

\alpha = \frac{\omega}{t}

\alpha = \frac{66.67}{6}

\alpha = 11.11rad/s^2

Therefore the angular acceleration of a point on the outer edge of the tires is 11.11rad/s^2

5 0
3 years ago
A 6 N and a 10 N force act on an object. The moment arm of the 6 N force is 0.2 m. If the 10 N force produces five times the tor
Levart [38]

Answer:

The moment arm is 0.6 m

Explanation:

Given that,

First force F_{1}=6\ N

Second force F_{2}=10\ N

Distance r = 0.2 m

We need to calculate the moment arm

Using formula of torque

\tau=Force\times lever\ arm

So, Here,

\tau_{2}=5 \tau_{1}

We know that,

The torque is the product of the force and distance.

Put the value of torque in the equation

F_{2}\times d_{2}=5\times F_{1}\times r_{1}

r_{2}=\dfrac{5\times F_{1}\times r_{1}}{F_{2}}

Where, F_{1}=First force

F_{1}=First force

F_{2}=Second force

r_{1}= distance

Put the value into the formula

r_{2}=\dfrac{5\times6\times0.2}{10}

r_{2}=0.6\ m

Hence, The moment arm is 0.6 m

6 0
4 years ago
An airplane is moving at 350 km/hr. If a bomb is
Molodets [167]

Answers:

a) -171.402 m/s

b) 17.49 s

c) 1700.99 m

Explanation:

We can solve this problem with the following equations:

y=y_{o}+V_{oy}t-\frac{1}{2}gt^{2} (1)

x=V_{ox}t (2)

V_{f}=V_{oy}-gt (3)

Where:

y=0 m is the bomb's final jeight

y_{o}=1.5 km \frac{1000 m}{1 km}=1500 m is the bomb'e initial height

V_{oy}=0 m/s is the bomb's initial vertical velocity, since the airplane was moving horizontally

t is the time

g=9.8 m/s^{2} is the acceleration due gravity

x is the bomb's range

V_{ox}=350 \frac{km}{h} \frac{1000 m}{1 km} \frac{1 h}{3600 s}=97.22 m/s is the bomb's initial horizontal velocity

V_{f} is the bomb's fina velocity

Knowing this, let's begin with the answers:

<h3>b) Time</h3>

With the conditions given above, equation (1) is now written as:

y_{o}=\frac{1}{2}gt^{2} (4)

Isolating t:

t=\sqrt{\frac{2 y_{o}}{g}} (5)

t=\sqrt{\frac{2 (1500 m)}{9.8 m/s^{2}}} (6)

t=17.49 s (7)

<h3>a) Final velocity</h3>

Since V_{oy}=0 m/s, equation (3) is written as:

V_{f}=-gt (8)

V_{f}=-(97.22)(17.49 s) (9)

V_{f}=-171.402 m/s (10) The negative sign ony indicates the direction is downwards

<h3>c) Range</h3>

Substituting (7) in (2):

x=(97.22 m/s)(17.49 s) (11)

x=1700.99 m (12)

5 0
3 years ago
What happens when bromine reacts with carbon?
serious [3.7K]
D. Electrons are shared between the bromine atoms and carbon atoms
4 0
3 years ago
Read 2 more answers
A tuning fork has a frequency of 280 Hz and the wavelength of the sound produced is 1.5 meters. Calculate the wave's frequency a
s2008m [1.1K]

Answer:

The answer would be 420 m/s

Explanation:

Look in attachment ⬇

I Hope this Helps!!!

3 0
3 years ago
Other questions:
  • 61 pts!!!!!!!!!!!!!!!!!!!
    10·2 answers
  • Solving elastic collisions problem the hard way
    13·1 answer
  • How to find initial velocity in projectile motion problems when you are not given the vlocity?
    10·1 answer
  • A horizontal force of 120 N is required to push a bookcase across the floor at a constant velocity how much is the friction forc
    10·1 answer
  • Why is a control group important?
    14·1 answer
  • You are skiing in ... preparation for a competition. being a dedicated physics student, you happen to have a scale with you. you
    15·1 answer
  • Gave the examples of Civil law​
    10·2 answers
  • 2. If 66.2 J of thermal energy is removed from a 0.141 kg piece of iron, what is its change in temperature? The specific heat ca
    7·1 answer
  • Car A has a mass of 2000 kg and is going 28 m/s east.
    15·1 answer
  • Part 1- An ideal gas, initially at a volume of 1.71429 L and pressure of 7 kPa, undergoes isothermal expansion until its volume
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!