1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
2 years ago
13

The dentisty of an object relies on both the _________ of the object.

Physics
1 answer:
Daniel [21]2 years ago
7 0

Answer:

Density is determined by an object's mass and volume.

Explanation:

If two objects take up the same volume, but one has more mass, then it also has a higher density.

You might be interested in
An electric filament lamp is connected to a power supply and switched on.
ladessa [460]
This is because of of the heating effect of a current. The glow is a result of current passing through the filament. The current experiences resistance as a result heat is generated. When resistance is at zero, there potential differences is not needed hence temperature generated will be at a constant.
7 0
3 years ago
A motorist travels a distance of 406 km during a 7 hr period. What was the average speed in (a) km/hr and (b) m/sec?
Sholpan [36]
The motorist travels (a) 58 km/h and (b) ~16.1 m/sec
4 0
3 years ago
Read 2 more answers
Helppppppppppppppp.......
kow [346]

Answer:

9013 m/s

Explanation:

hope it helped!!!

8 0
3 years ago
Planet 1 orbits Star 1 and Planet 2 orbits Star 2 in circular orbits of the same radius. However, the orbital period of Planet 1
hichkok12 [17]

Answer:

The mass of Star 2 is Greater than the mass of Start 1. (This, if we suppose the masses of the planets are much smaller than the masses of the stars)

Explanation:

First of all, let's draw a free body diagram of a planet orbiting a star. (See attached picture).

From the free body diagram we can build an equation with the sum of forces between the start and the planet.

\sum F=ma

We know that the force between two bodies due to gravity is given by the following equation:

F_{g} = G\frac{m_{1}m_{2}}{r^{2}}

in this case we will call:

M= mass of the star

m= mass of the planet

r = distance between the star and the planet

G= constant of gravitation.

so:

F_{g} =G\frac{Mm}{r^{2}}

Also, if the planet describes a circular orbit, the centripetal force is given by the following equation:

F_{c}=ma_{c}

where the centripetal acceleration is given by:

a_{c}=\omega ^{2}r

where

\omega = \frac{2\pi}{T}

Where T is the period, and \omega is the angular speed of the planet, so:

a_{c} = ( \frac{2\pi}{T})^{2}r

or:

a_{c}=\frac{4\pi^{2}r}{T^{2}}

so:

F_{c}=m(\frac{4\pi^{2}r}{T^{2}})

so now we can do the sum of forces:

\sum F=ma

F_{g}=ma_{c}

G\frac{Mm}{r^{2}}=m(\frac{4\pi^{2}r}{T^{2}})

in this case we can get rid of the mass of the planet, so we get:

G\frac{M}{r^{2}}=(\frac{4\pi^{2}r}{T^{2}})

we can now solve this for T^{2} so we get:

T^{2} = \frac{4\pi ^{2}r^{3}}{GM}

We could take the square root to both sides of the equation but that would not be necessary. Now, the problem tells us that the period of planet 1 is longer than the period of planet 2, so we can build the following inequality:

T_{1}^{2}>T_{2}^{2}

So let's see what's going on there, we'll call:

M_{1}= mass of Star 1

M_{2}= mass of Star 2

So:

\frac{4\pi^{2}r^{3}}{GM_{1}}>\frac{4\pi^{2}r^{3}}{GM_{2}}

we can get rid of all the constants so we end up with:

\frac{1}{M_{1}}>\frac{1}{M_{2}}

and let's flip the inequality, so we get:

M_{2}>M_{1}

This means that for the period of planet 1 to be longer than the period of planet 2, we need the mass of star 2 to be greater than the mass of star 1. This makes sense because the greater the mass of the star is, the greater the force it applies on the planet is. The greater the force, the faster the planet should go so it stays in orbit. The faster the planet moves, the smaller the period is. In this case, planet 2 is moving faster, therefore it's period is shorter.

6 0
3 years ago
What is the magnitude of the sum of the two vectors A = 36 units at 53 degrees, and B =47 units at 157 degrees.
Thepotemich [5.8K]

Answer:

51.82

Explanation:

First of all, let's convert both vectors to cartesian coordinates:

Va = 36 < 53° = (36*cos(53), 36*sin(53))

Va = (21.67, 28.75)

Vb = 47 < 157° = (47*cos(157), 47*sin(157))

Vb = (-43.26, 18.36)

The sum of both vectors will be:

Va+Vb = (-21.59, 47.11)   Now we will calculate the module of this vector:

|Va+Vb| = \sqrt{(-21.59)^2+(47.11)^2}=51.82

4 0
3 years ago
Other questions:
  • An airplane flies at 400 km/h in a 100km/h hurricane crosswind. Find the resultant speed of the plane.
    6·1 answer
  • You then measure Polly's internal temperature to be 13°C, which is quite a drop from the normal human body temperature of 37°C.
    9·1 answer
  • Mike has been struggling to maintain a healthy weight since starting college.which of the following statements shows a positive
    7·2 answers
  • Determine the potential difference between two charged parallel plates that are 0.10 cm apart and have an electric field strengt
    11·1 answer
  • A pulley is able to lift a mass of 25 kg 0.30 m with an applied force of 50 N over a distance of 1.5 m. What is the ideal mechan
    9·1 answer
  • How strong is the attractive force between a glass rod with a 0.700μC0.700μC charge and a silk cloth with a –0.600μC–0.600μC cha
    7·1 answer
  • A book with a mass of 1.2 kg sits on a bookshelf. If it has a gravitational
    11·1 answer
  • If the loop is removed from the field region in a time interval of 2.8 ms , find the average emf that will be induced in the wir
    9·1 answer
  • The _________ is the difference between two times
    13·1 answer
  • Assuming a current is flowing, what increases the strength of the magnetic field of a coiled electrical wire? Select all that ap
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!