Alkali metals are known for being some of the most reactive metals. This is due in part to their larger atomic radii and low ionization energies. They tend to donate their electrons in reactions and often have an oxidation state of +1. These metals are characterized as being extre
An element with 8 valence electrons is Neon (Ne).
Ps: Any element under group 18 has 8 valence electrons except for Helium (He).
Bonjour,
increasing temperature.
for many solids dissolved in liquid water, the solubility increases with temperature.
Answer:
The attractive force is negative and MgO has a higher melting point
Explanation:
From Couloumb's law:
Energy of interaction, E = k 
where q1 and q2 are the charges of the ions, k is Coulomb's constant and r is the distance between both ions, i.e the atomic radii of the ions.
If you look at Coulomb's law, you note that in the force is negative (because q1 is negative while q2 is positive).
In addition to that, the compounds MgO and NaF have similar combined ionic radii, then we can determine the melting point trend from the amount of energy gotten
The melting point of ionic compounds is determined by 1. charge on the ions 2. size of ions. while NaF has smaller charges (+1 and -1), MgO (+2 and -2) has larger charges and greater combined atomic radii. This implies that the compound with greater force would have a higher melting point.
Hence the compound MgO would have a higher melting point than NaF.
Taking into account the definition of molarity, the molarity of solution of sodium sulfate is 0.0732
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>Molarity of solution of sodium sulfate.</h3>
In this case, you have:
- number of moles of sodium sulfate=
(being 142 g/mole the molar mass of sodiums sulfate) - volume= 500 mL= 0.5 L (being 1000 mL= 1 L)
Replacing in the definition of molarity:

Solving:
Molarity= 0.0732 
Finally, the molarity of solution of sodium sulfate is 0.0732
.
Learn more about molarity:
brainly.com/question/9324116
brainly.com/question/10608366
brainly.com/question/7429224