2x + 1.5x +20 = 90
3.5 x = 90-20
3.5 x = 70
x = 70/3.5
x = 20
angle DAE = 2*20 = 40
angle CAD = 1.5*20 +20 = 50
Ok so what you will do is 3-18 then you will add 1 and make is to 400X1
By inspection, it's clear that the sequence must converge to

because

when

is arbitrarily large.
Now, for the limit as

to be equal to

is to say that for any

, there exists some

such that whenever

, it follows that

From this inequality, we get




As we're considering

, we can omit the first inequality.
We can then see that choosing

will guarantee the condition for the limit to exist. We take the ceiling (least integer larger than the given bound) just so that

.
I belive there is none because it lands on the origin for y.
8 is the hundreds, 7 in the tens, and 3 in the ones